
UNINTERRUPTIBLE POWER SUPPLY 65 to 125 kVA Three-Phase Output

MASTER HP-UL USER MANUAL

Pag. 1 a 83 0MLMHTK65RUENUB

RPS SpA
Viale Europa 7
37045 Legnago (VR) Italy
www.riello-ups.com

Pag. 2 a 83 0MLMHTK65RUENUB

Thank you for choosing our product.

RPS S.p.A. is highly specialized in the development and production of uninterruptible power systems (UPS). The UPS's of this series are high quality products, carefully designed and manufactured to ensure optimum performance.

Applicability

This manual applies to the following models:

MASTER HP-UL 65-00

65 kVA, 480 V input, 480 V output, 60 Hz, configured as wye-wye or delta-delta (see below); "00" may be replaced with an alternate two character designator that denotes installed options as described in the order documentation.

MASTER HP-UL 80-00

80 kVA, 480 V input, 480 V output, 60 Hz, configured as wye-wye or delta-delta (see below); "00" may be replaced with an alternate two character designator that denotes installed options as described in the order documentation.

MASTER HP-UL 100-00

100 kVA, 480 V input, 480 V output, 60 Hz, configured as wye-wye or delta-delta (see below); "00" may be replaced with an alternate two character designator that denotes installed options as described in the order documentation.

MASTER HP-UL 125-00

125 kVA, 480 V input, 480 V output, 60 Hz, configured as wye-wye or delta-delta (see below); "00" may be replaced with an alternate two character designator that denotes installed options as described in the order documentation.

The wye output configuration that provides an output neutral connection is only permitted when an input neutral is provided; that is, the delta-wye configuration is prohibited. The source must have a grounded neutral, even if the neutral is not connected to the UPS; that is, a delta source may not be ungrounded or corner grounded. Please refer to Section 4.4 for additional information.

SAFETY WARNINGS

IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS

This manual contains important instructions for Models 65, 80, 100, 125 kVA MASTER HP-UL UPS that should be followed during installation and maintenance of the UPS. Please read all instructions before operating the equipment and save this manual for future reference.

READ AND FOLLOW ALL SAFETY INSTRUCTIONS

- a. Do not use outdoors.
- b. Do not route wiring across or near hot surfaces.
- c. Do not install near gas or electric heaters.
- d. Use caution when servicing batteries. Battery acid can cause burns to skin and eyes. If acid is spilled on skin or in eyes, flush acid with fresh water and contact a physician immediately.

Pag. 3 a 83 OMLMHTK65RUENUB

- e. Equipment should be installed where it will not readily be subjected to tampering by unauthorized personnel.
- f. The use of accessory equipment not recommended by the manufacturer may cause an unsafe condition.
- g. Do not use this equipment for other than intended use.

DANGER

This UPS contains LETHAL VOLTAGES. All repairs and service should be performed by AUTHORIZED SERVICE PERSONNEL ONLY. There are NO USER SERVICEABLE PARTS inside the UPS.

WARNING

To reduce the risk of fire or electric shock, install this UPS in a temperature and humidity controlled, indoor environment, free of conductive contaminants. Do not operate near water or excessive humidity (95% maximum).

Input and output over-current protection and disconnect switches must be provided by others. High ground leakage current may be present. Do not operate the equipment without a proper protective ground.

CAUTION

Batteries can present a risk of electrical shock or burn from high short circuit current. Observe proper precautions. Servicing should be performed by qualified service personnel knowledgeable of batteries and required precautions. Keep unauthorized personnel away from batteries.

There is a risk of explosion if batteries are replaced by an incorrect type. Replace with same type and rating only.

Proper disposal of batteries is required. Refer to your local codes for disposal requirements.

Never dispose of batteries in a fire

DEFINITION OF "OPERATOR" AND "SPECIALIZED TECHNICIAN"

The professional figure responsible for accessing the equipment for ordinary maintenance purposes is defined with the term *operator*.

This definition covers personnel that know the operating and maintenance procedures for the equipment, and that have been:

- 1. Trained to operate in accordance with the safety standards relating to the dangers that may arise where electrical voltage is present.
- 2. Trained to use Personal Protective Equipment and to carry out basic first aid.

The professional figure responsible for the installation and start-up of the equipment, and for any extraordinary maintenance, is defined with the term *specialized technician*.

This definition covers personnel that, in addition to the requirements listed above for a general operator, must also:

- 1. Have been suitably trained by the manufacturers or their representative.
- 2. Be aware of installation, assembly, repair and service procedures, and have a specific technical qualification.
- 3. Must have a background of technical training, or specific training relating to the procedures for the safe use and maintenance of the equipment.

Pag. 4 a 83 0MLMHTK65RUENUB

EMERGENCY INTERVENTIONS

The following information is of a general nature.

First aid interventions

Company regulations and traditional procedures should be followed for any first aid intervention that may be required.

Fire fighting measures

- 1. Do not use water to put out a fire, but only fire extinguishers that are suitable for use with electrical and electronic equipment.
- 2. If exposed to heat or fire, some products may release toxic fumes into the atmosphere. Always use a respirator when extinguishing a fire.

Symbols used in the manual

In this manual, some operations are shown by graphic symbols to alert the reader to the dangerous nature of the operations:

A	Danger / Risk of Electric Shock Possibility of serious injury or substantial damage to the device, unless adequate precautionary countermeasures are taken.
<u> </u>	Caution This symbol means that important information must be read with care.
	Risk of Explosion
i	Note
(=)	Ground Connection
	Electrostatic Sensitive Device
	It is recommended to read the manual.

Pag. 5 a 83 0MLMHTK65RUENUB

PERSONAL PROTECTIVE EQUIPMENT

No maintenance operations must be carried out on the device without wearing the Personal Protective Equipment (PPE) described below.

Personnel involved in the installation or maintenance of the equipment must not wear clothes with wide sleeves or laces, belts, bracelets or other items that may be dangerous, especially if they are metallic. Long hair must be tied in such a way as to ensure that it is not a hazard.

The following signs show the protective equipment that should be worn. The various items of PPE must be selected and sized according to the nature of the hazard (particularly electrical) posed by the equipment.

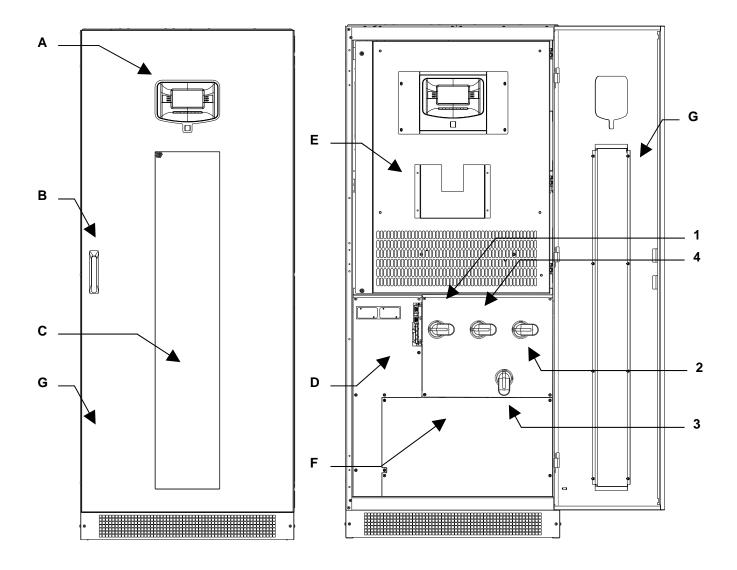
	Accident prevention footwear Use: always	Protective eyewear Use: always
1	Protective clothing Use: always	Helmet Use: When there are suspended loads
	Work gloves Use: always	

GENERAL PRECAUTIONS

This manual contains detailed instructions for the use, installation and start-up of the UPS. Read the manual carefully before installation. For information on using the UPS, the manual should be kept close at hand and consulted before carrying out any operation on the device.

This device has been designed and manufactured in accordance with the standards for the product, for normal use and for all uses that may reasonably be expected. It may under no circumstances be used for any purposes other than those envisaged, or in any other ways than those described in this manual. Any interventions should be carried out in accordance with the criteria and the time-frames described in this manual.

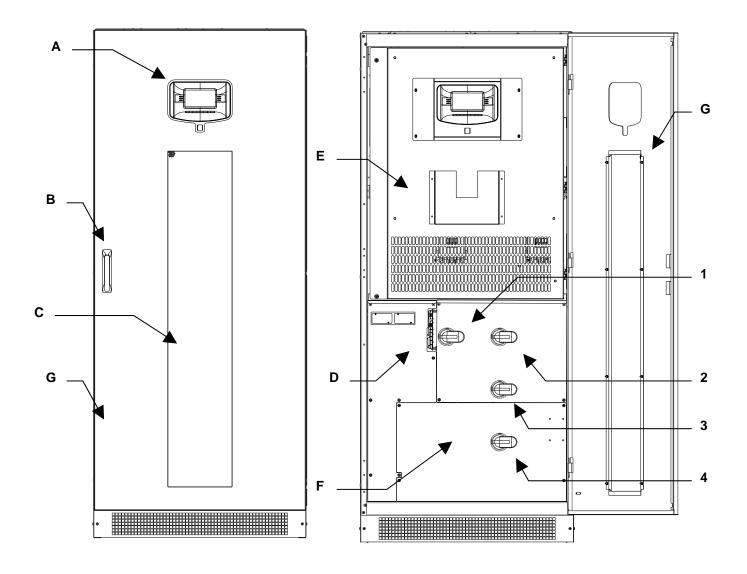
No reproduction of any part of this manual, even partial, is permitted without the authorization of RPS S.p.A. The RPS S.p.A. reserves the right to modify the product described herein, in order to improve it, at any time and without notice.


Pag. 6 a 83 0MLMHTK65RUENUB

CONTENTS

LAYOUT		<i>9</i>
P RELIMINA	ARY OPERATIONS	11
	the packaging and positioning the device	
_	F00	
U		
INSTALLAT	ION ENVIRONMENT	12
	onditions:	
	ns of the premises	
~ .	f the premises	
Air change	e for battery premises	13
ELECTRICA	AL CONNECTIONS	14
UPS in sin	ngle configuration	
1.1.1	Cable Entry	16
1.1.2	Connection of Power Cables for Single input Unit	
1.1.3	Connection of Power Cables for Dual input Unit	
	Wire Size Requirements	
External C	Over Current Protection device and terminals	23
1.1.4	Differential (GFI)	
1.1.5	Backfeed protection	
1.1.6	Emergency power off device (EPO)	
	ad and battery connections	
	n of signals and remote commands	
1.1.7	Parallel (optional)	
1.1.8	REMOTE COMMANDS, ALARMS AND EPO	
1.1.9 1.1.10	RS232SLOTS 2-1, the following cards may be inserted (optional):	
1.1.10	REMOTE ALARMS (2 optional cards)	
1.1.12		
1.1.13	* *	
1.1.14	2 1 \ \ 1 \ / 1	
1.1.15	, T	
	SWOUT and SWMB aux	
	rocedure	
	Battery operation check modes	
1.1.18 1.1.19	On - line - factory setting Standby-on / Smart active	
1.1.19		
1.1.21		
Personalis	sation's	
Procedure	e to transfer the load from UPS onto maintenance bypass	37
Block diag	gramgram	39
	nts of the block diagrams	
•	trallel configuration	
-	Introduction	
	system set-up.	
	Input	
	Ground Fault	
	Emergency power off device (EPO)	

1.1.26 External maintenance bypass	
1.1.27 UPS AC input / output power connection	
1.1.28 Connecting the Parallel Card (option)	
Connection of signals	
Start-up procedure	
Operating modes	
Mechanical Bypass	
Frequency Converter Setup	53
SIGNAL PANEL FUNCTIONS	56
1.1.29 Language setting menu (keys 1, 1)	61
1.1.30 Measurements menus (key 2)	
1.1.31 Times Measurement	
1.1.32 Full page Measurements and output waveforms (key 2, 7)	63
1.1.33 Controls Menu (key 3),	64
1.1.33.1 Keys menu 3, 2: battery test	64
1.1.33.2 CUSTOMIZING	
1.1.33.3 Keys menu 3, 5: CODE 436215	65
1.1.33.4 RATED OUTPUT VOLTAGE	66
1.1.33.5 BATTERY	66
1.1.33.6 PRE-ALARM	
1.1.33.7 AUTO-OFF "VA"	
1.1.33.8 AUTO-OFF Timer.	
1.1.33.9 BYPASS VOLTAGE RANGE ADJUSTMENT	
1.1.33.10 BYPASS FREQUENCY RANGE ADJUSTMENT	
1.1.33.11 MODEM	
1.1.33.12 "DIAL /SEND" MODEM	
1.1.33.13 RS232	
1.1.33.14 ECHO	
1.1.33.15 IDENTIFICATION.	
1.1.33.16 STANDBY-ON OPERATION	
1.1.33.17 SMART ACTIVE OPERATION	
1.1.33.18 INVERTER-OFF/BYPASS	
1.1.33.19 TOTAL BLOCK	
1.1.34 "RECORDER": RECORDED EVENTS (key 4)	
1.1.34.1 RECORDED VOLTAGES MEASUREMENTS	
1.1.34.2 RECORDED CODES	
1.1.34.3 RECORDED value on full page	
1.1.35 DISABLING THE AUDIBLE ALARM (key 5)	
1.1.36 "CLOCK": DATE/TIME (key 6)	
MAINTENANCE	76
GENERAL CHARACTERISTICS	77
APPENDIX A ALARM MESSAGES	<i>79</i>
APPENDIX R - OPTIONAL REMOTE COMMANDS	82


Layout UPS 65-80KVA FRONT VIEW

- A Control panel with graphic display
- B Door handle
- C Ventilation grilles
- D Communication area
- E Front Cover panel with ventilation grilles
- F Switch cover panel
- G Door
- 1 SWIN: Input power switch
- 2 SWOUT: Static switch output
- 3 SWMB: Mechanical bypass switch
- 4 SWBY: Static switch bypass input
 - See single line diagram (page 17) for switch functions.

Pag. 9 a 83 0MLMHTK65RUENUB

UPS 100-125KVA FRONT VIEW

- A Control panel with graphic display
- B Door handle
- C Ventilation grilles
- D Communication area
- E Front Cover panel with ventilation grilles
- F Switch cover panel
- G Door
- 1 SWIN: Input power switch
- 2 SWOUT: Static switch output
- 3 SWMB: Mechanical bypass switch
- 4 SWBY: Static switch bypass input

See single line diagram (page 17) for switch functions.

Pag. 10 a 83 0MLMHTK65RUENUB

Preliminary operations

Removing the packaging and positioning the device

On delivery, the packaging must be inspected to ensure that it is whole and that it has not been crushed or dented. Check in particular that neither of the two impact resistant devices on the packaging is red; if one of them is red; follow the instructions on the packaging.

The essential details of the device are provided on the shipping document. The marking, weight and dimensions of the various items making up the packing list are shown.

Check the state of the device by means of a visual inspection of both the inside and the outside. Any dents seen mean that it has suffered shocks during shipping, which could compromise the normal operation of the device.

During inspection, you may notice that a flat cable is left unconnected from one of the Circuit Cards on the back of the inner front door. The reason for this is as follows: The UPS is supplied with the paralleling controls as standard, but the UPS is shipped with this feature disabled. Disablement is due to one end of a flat cable being left unconnected. One end of this cable connects to J2 of the System Card (a printed wiring board assembly with "2032" in the part number). The end that is left unconnected needs to be connected to J3 on the paralleling Card ("2034" in the part number) if parallel operation is desired. If this cable is connected, the UPS will not operate without the modular cables connected between the UPS units that are to be paralleled. That is, DO NOT connect this cable for standalone (non-parallel) operation.

Storage

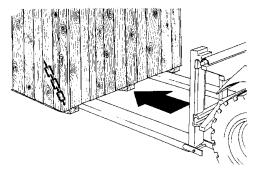
In the following situations:

- installation not immediately after delivery;
- de-installation and storage while awaiting relocation,

Place the device in covered premises that are protected from direct contact with atmospheric agents and dust. The following environmental values are those allowed in the storage area:

Temperature: $-13^{\circ}F \text{ to } +167^{\circ}F \text{ (} -25 \text{ to } +75^{\circ}\text{C)}$

Relative humidity: 30-95 % max.



For the installation of a battery cabinet, if provided with the uninterruptible power supply, follow the instructions given in the specific manual.

The list of material provided may vary depending on the order specifications. As a general rule, the packaging should include the following: this manual, the installation drawing, the warranty and eventual accessories.

Handling

The equipment must only be handled by adequately trained personnel. It can be unloaded from the vehicle and put into place by lifting the box or the wooden deck to which the equipment is secured with a fork-lift truck. A fork-lift truck should be used for the permanent positioning of the equipment, in accordance with the instructions provided below.

- Insert the forks of the fork-lift truck in the lower part of the device, from the front or back, and ensure that they stick out about 12 inches on the other side.
- 2 Secure the device to the fork-lift before moving it.

Pag. 11 a 83 OMLMHTK65RUENUB

Risk of overturning

In order to avoid the risk of the device overturning, ensure that it is firmly secured to the fork-lift truck by means of appropriate ropes before moving it.

When being moved the cabinet should be handled with care; shocks or drops can damage it. Once in position, remove the packaging carefully in order not to scratch the device.

The packaging should be removed as follows:

- 1. Cut the bands
- 2. Slide away the carton from above.
- 3. Remove the screws securing the cabinet to the wooden base.

Installation environment

The UPS and the battery cabinet have been designed for indoor installation. The choice of premises for installation should comply with the points set out below.

Ambient conditions:

- ensure that the floor can support the weight of the FIRSTLINE and of any battery cabinet that may be used
- avoid dusty environments (the indoor area must be free of conductive contaminations)
- avoid narrow environments that could hinder normal maintenance operations
- avoid placing the device in areas exposed to direct sunlight or heat
- ensure that the ambient temperature conforms to the following:

minimum operating temperature: +32°F (0°C)
 maximum temperature for 8 hours a day: +104°F (+40°C)
 average temperature for 24 hours: +95°F (+35°C)

Dimensions of the premises

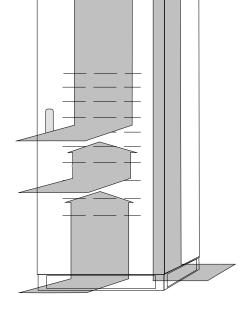
For the mechanical dimensions of the cabinets, refer to the "INSTALLATION DRAWINGS" supplied with the UPS and with the battery cabinet, if present. These drawings provide the following data:

- the position of the holes in the base to secure the device to the floor, if applicable;
- a view of the floor support for the sizing of a structure to raise the cabinet, if applicable;
- the position of cable entry;
- the position of the fans on the top of the UPS, for the positioning of a structure to convey the warm air discharged by the equipment outside the premises, if applicable;
- the input, output and battery cables section;
- the power dissipated by the equipment (kW).

Pag. 12 a 83 OMLMHTK65RUENUB

Cooling of the premises

The recommended operating temperature for the lifetime of the UPS and of the batteries is between 20 and 25°C.


The lifespan of the battery depends on the operating temperature; with an operating temperature increase from 20°C to 30°C, the lifespan of the batteries is halved.

A heat dissipation system is required to keep the temperature of the premises housing the equipment within the field 20-25°C.

The heat dissipation needed for the correct operation of the UPS is brought about by the air current made by the fans located inside the UPS (forced convection) and by the air around the side panels (natural convection).

In order to ensure proper air circulation, and therefore the correct operation of the UPS, measures must be taken during installation to avoid any obstructions to the free circulation of air. These include the following:

- Ensure a distance of at least 24 inches from the ceiling, so as not to hinder air extraction,
- Leave a free space of at least 36 inches at the front of the equipment to ensure both the circulation of the air and installation and maintenance operations;
- With natural convection the thermal load is dissipated to the outside through the walls; thus a cabinet placed against a wall or in a hollow dissipates less heat than one located in a free environment.
 The following rule must be observed:

Leave at least one of the three side walls free: right, left or back.

• The bottom side kick panels must not be mounted for installations where cabinets are placed side by side.

Air change for battery premises

The premises housing the battery cabinet must have sufficient air circulation to ensure that the concentration of hydrogen issued during battery charging is kept below the danger limit.

The air change in the premises should preferably be provided by natural ventilation, otherwise by forced ventilation.

The standard EN 50272-2 for air change envisages that the minimum opening must satisfy the following equation:

$$A = 28 \times Q = 28 \times 0.05 \times n \times Igas \times C10 (1/10^3) [cm^2]$$

where: A =free opening for air intake and outlet

Q = flow of air to be removed [m³/h] n = number of battery elements; C10 = battery capacity over 10 hours [Ah] Igas = current that produces gas [mA//Ah]

In accordance with the standard: Igas = 1 VRLA type battery (*)

(*) for vented or nickel batteries, contact the battery manufacturer.

When the equation is applied for 240 element (40 battery) hermetically-sealed lead batteries:

$$A = 336 \times C10 / 10^3 \text{ [cm}^2\text{]}$$

When using 120Ah batteries, the minimum aperture should be approximately:

 $A = 41 \text{ [cm}^2\text{] or (multiplied by .155)} = 6.36 \text{ in}^2$

The air intake and outlet must be positioned to ensure the best possible circulation; for example: - apertures on opposite walls,

- a minimum distance of 6 ft. when they are on the same wall.

Pag. 13 a 83 OMLMHTK65RUENUB

Electrical Connections ACCESSING THE UPS TERMINALS

The following operations must be performed while the UPS is disconnected from the utility mains power, switched off and all the input and output power switches on the equipment are open. Before performing connection, open all the input and output power switches and check that the UPS is completely isolated from all power sources: battery and AC power line. In particular, check that:

- the UPS input line is completely isolated;
- that the battery circuit breaker/disconnect is open;
- all the UPS power and load connection switches (SWIN, SWBY, SWOUT and SWMB) are in the open position:
- no dangerous voltages are present (use a multimeter).

The first connection to be performed is the protective wire (earth ground cable) which has to be inserted into the terminal labelled PE. The UPS must operate with the grounding system connected.

Do not connect the output neutral to the input neutral.

CAUTION: If the input connection is Delta the UPS can supply only Delta load. The output neutral must not be connected unless the UPS is the Wye version supplied with an input neutral.

TRANSFORMER BOXES (optional) are available for converting the distribution systems from 3 to 4 wires.

CAUTION: If a three-phase non-linear load is connected to the output, the current on the neutral conductor can reach a value of 1.5 times the value of the phase current, dimension the input/output neutral cable appropriately.

CAUTION: The UPS cannot feed from a corner ground or mid-point grounded delta supply source.

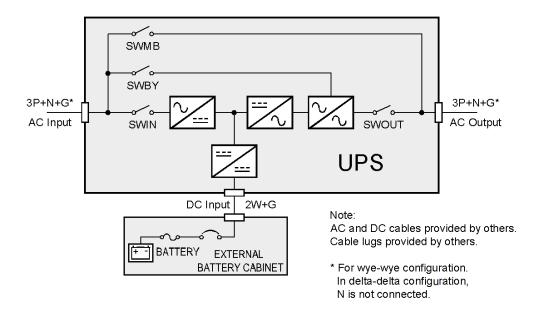
CAUTION: Use only lugs or cables with tin-plated eyes for the connections.

CAUTION: Ensure correct phase sequence at the input and output terminals

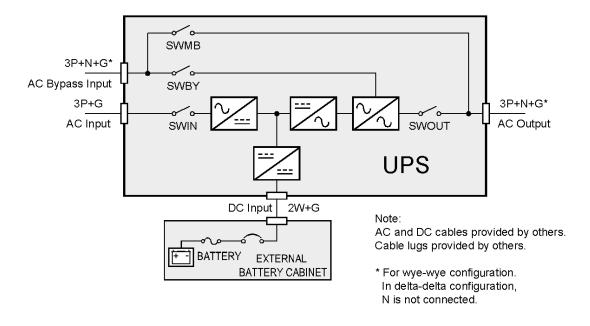
Ensure correct polarity battery connections

The DC input requires a disconnect means which is provided in each RPS supplied battery cabinet ordered with this unit. Battery cabinet models are BBX 1900 480V UL L6 3U BBX 1900 480V UL L8 3U

AC and DC cables and cable lugs are to be provided by others as part of the UPS installation


Each model can be configured for a delta input source with a delta connected load or for a wye input with a wye connected load. If the load requires a neutral connection (i.e. wye), then an input neutral must be provided. Refer to the Power Connection terminals diagrams later in this section for details concerning configuration of the neutral to ground bond.

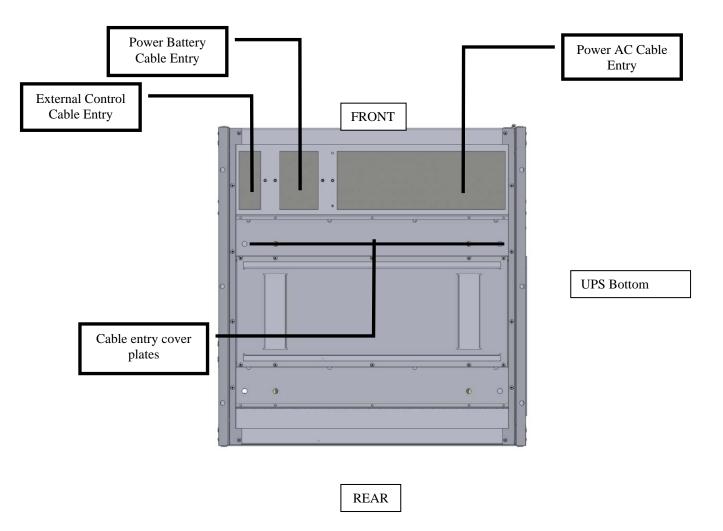
Pag. 14 a 83 0MLMHTK65RUENUB


UPS in single configuration

The UPS is designed to work as Single input Unit or as Dual input Unit.

Schematic diagram: Single input Unit

Schematic diagram: Dual input Unit

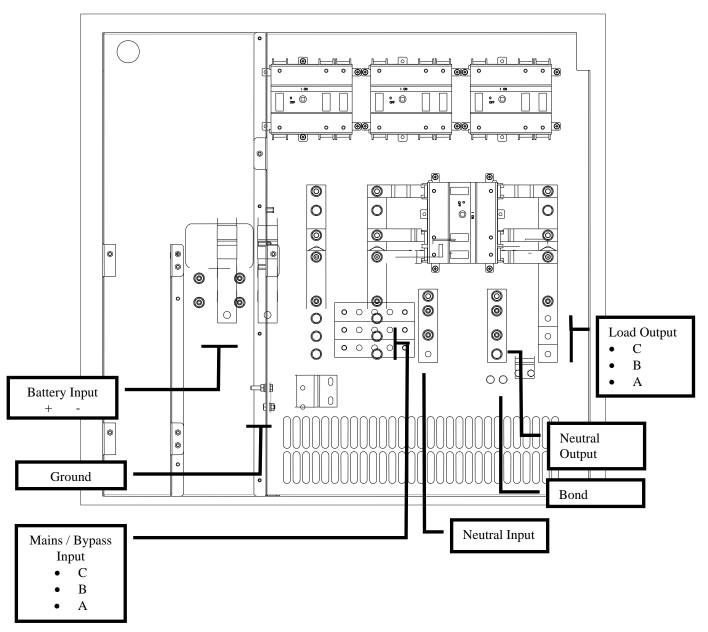

Pag. 15 a 83 0MLMHTK65RUENUB

1.1.1 Cable Entry

The cables can enter in the UPS from the bottom or from the top with the ancillary Top Cable Entry cabinet (see related installation manual)

Proceed as follows in order to open the UPS

- Open the door
- Remove the switch cover panel
- Remove the bottom cable entry cover plates
- Drill or punch conduit holes in the cover plates
- Route the power cable through the bottom to the UPS terminals in base to your configuration (see the next paragraphs)

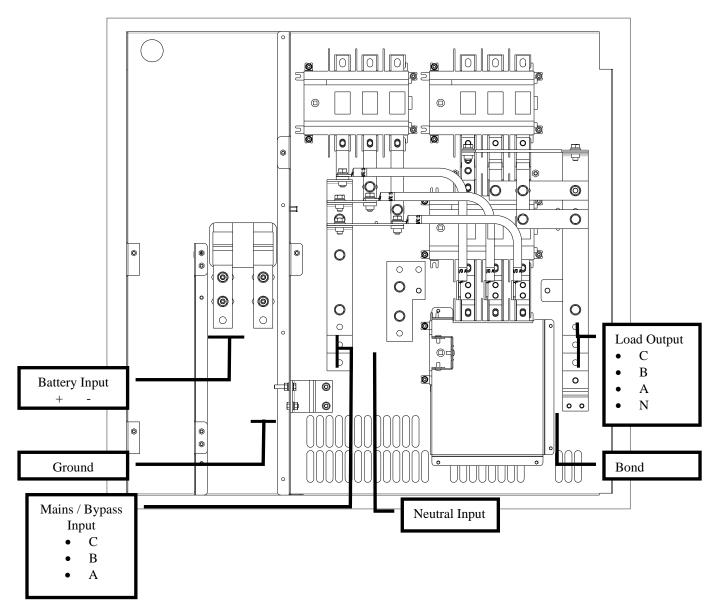


Pag. 16 a 83 0MLMHTK65RUENUB

1.1.2 Connection of Power Cables for Single input Unit

Connect the input, output and battery cables to the terminals as shown in the figure below:

UPS 65-80kVA Power connection Terminals



Note: For the Input, Output and Battery connections, respect the order from the top to bottom, or right to left, as described in the boxes. The label marked "N" present on the terminal identifies the neutral terminal. The single input is a factory default configuration. Do not remove the bypass jumper. The input phase connections are made using bolts to one of the three holes in the bus bar. Do not loosen the bolts that attach the bus bar. Bond: The UPS is provided with a separate bus bar that connects the Neutral Output to the frame Ground for delta input connection. This is required to meet NEC grounding code for separately derived neutrals. When a Neutral is provided in a Wye configured input connection the bus bar must be removed.

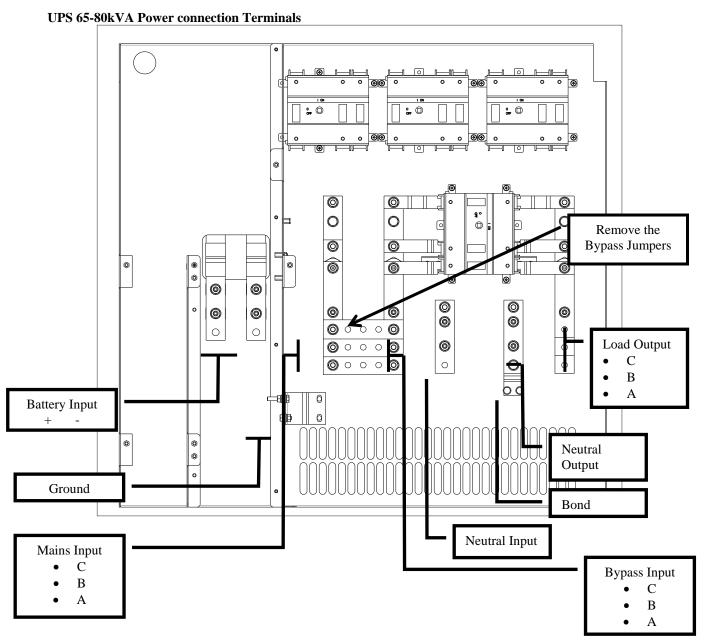
Once installation has been completed inside the equipment, put the switch cover panel back and close the door.

Pag. 17 a 83 0MLMHTK65RUENUB

UPS 100-125kVA Power connection Terminals

Note: For the Input, Output and Battery connections, respect the order from the top to bottom, or right to left, as described in the boxes. The label marked "N" present on the terminal identifies the neutral terminal.

The single main is a factory default configuration. Do not remove the bypass jumper.


Bond: The UPS is provided with a separate bus bar that connects the Neutral Output to the frame Ground for delta input connection. This is required to meet NEC grounding code for separately derived neutrals. When a Neutral is provided in a Wye configured input connection the bus bar must be removed.

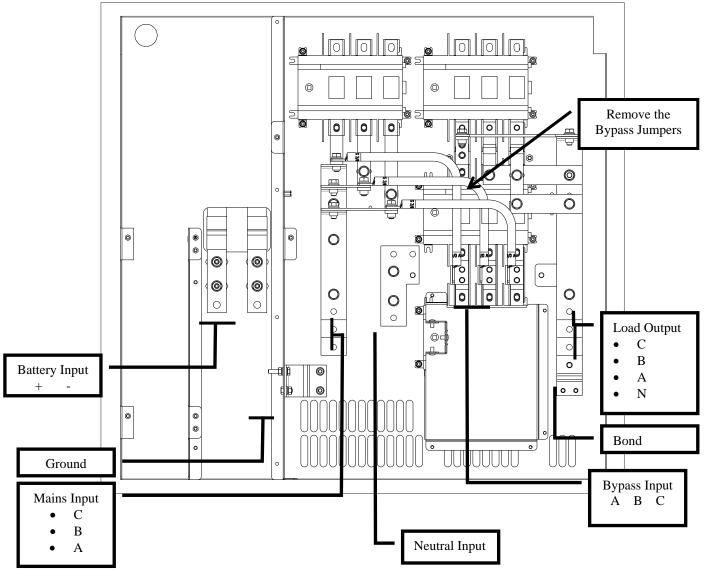
Once installation has been completed inside the equipment, put the switch cover panel back and close the door.

Pag. 18 a 83 0MLMHTK65RUENUB

1.1.3 Connection of Power Cables for Dual input Unit

Connect the input, output and battery cables to the terminals as shown in the figure below:

Remove the jumpers present between the SWIN and SWBY. The input phase connections attach using bolts through the holes that were previously used to attach the bus bars. The main (rectifier) input is located on the left and the bypass input is on the right. The neutral input comes from the bypass source; no neutral is to run from the rectifier input source, although the rectifier source must be a grounded wye.


Note: For the Input, Output and Battery connections, respect the order from the top to bottom, or right to left, as described in the boxes. The label marked "N" present on the terminal identifies the neutral terminal.

Bond: The UPS is provided with a separate bus bar that connects the Neutral Output to the frame Ground for delta input connection. This is required to meet NEC grounding code for separately derived neutrals. When a Neutral is provided in a Wye configured input connection the bus bar must be removed.

Once installation has been completed inside the equipment, replace the switch cover panel and close the door.

Pag. 19 a 83 0MLMHTK65RUENUB

UPS 100-125kVA Power connection Terminals

Remove the jumpers present between the SWIN and SWBY.

Note: For the Input, Output and Battery connections, respect the order from the top to bottom, or right to left, as described in the boxes. The label marked "N" present on the terminal identifies the neutral terminal. The neutral input comes from the bypass source; no neutral is to be run from the rectifier input source, although the rectifier source must be a grounded wye.

Bond: The UPS is provided with a separate bus bar that connects the Neutral Output to the frame Ground for delta input connection. This is required to meet NEC grounding code for separately derived neutrals. When a Neutral is provided in a Wye configured input connection the bus bar must be removed.

Once installation has been completed inside the equipment, replace the switch cover panel and close the door.

Pag. 20 a 83 0MLMHTK65RUENUB

Minimum Wire Size Requirements

	Input (for single input unit)			
UPS models	Phase and Neutral Conductor	Ground Wire		
65 kVA	1	6 AWG		
80 kVA	2/0	6 AWG		
100 kVA	3/0	6 AWG		
125 kVA	250 kcmil	4 AWG		

	Rectifier Input (for dual input unit only)			
UPS models	Phase Conductor	Ground Wire		
65 kVA	1	6 AWG		
80 kVA	2/0	6 AWG		
100 kVA	3/0	6 AWG		
125 kVA	250 kcmil	4 AWG		

	Bypass Input (for dual input unit only)			
UPS models	Phase and Neutral Conductor	Ground Wire		
65 kVA	2	6 AWG		
80 kVA	1/0	6 AWG		
100 kVA	2/0	6 AWG		
125 kVA	4/0 or 250 kcmil	4 AWG		

	Output		
UPS models	Phase and Neutral Conductor	Ground Wire	
65 kVA	2	6 AWG	
80 kVA	1/0	6 AWG	
100 kVA	2/0	6 AWG	
125 kVA	4/0 or 250 kcmil	4 AWG	

	Battery			
UPS models	Phase Conductor	Ground Wire		
65 kVA	3/0	6 AWG		
80 kVA	4/0	6 AWG		
100 kVA	300 kcmil	6 AWG		
125 kVA	400 kcmil	4 AWG		

CAUTION: Use at least 75° C rated copper wire. Minimum wire size is based on full load ratings applied to NEC Code Table 310-16. Code may require a larger AWG size than shown in this table because of temperature, number of conductors in the conduit, or long service runs. Follow local requirements. Branch circuit protection must be provided for the input circuits as part of the installation.

Pag. 21 a 83 0MLMHTK65RUENUB

	Recommended cable lugs			
Bolt Size	Wire	Thomas & Betts Connectors		
	6 AWG	54136		
5/16	4 AWG	54140		
	1/0	54109		
	2/0	54110		
	4/0	54112		
	250 kcmil	54172		
	2/0	54160		
3/8	300 kcmil	54114		
	400 kcmil	54116		

cables are to be connected to the field terminals through Listed cable lugs suitable for cable size. When using crimp type lugs, follow the manufacturer's instructions for both crimp tool and lug

Per NEC article 300-20(2), all three-phase conductors must be run in the same conduit. Neutral and ground must be run in the same conduit as the phase conductors.

Conduit is to be sized to accommodate one neutral conductor the same size as the phase conductor and one ground conductor. If two neutral conductors or an oversized neutral conductor are to be installed, check the size of the conduit needed to accommodate the extra wire or size and use that conduit size in place of the conduit size listed. Conduit sizes can be chosen from NEC Table C1, type letters RHH, RHW, RHW-2, TW, THW, THHW, THW-2.

Pag. 22 a 83 0MLMHTK65RUENUB

External Over Current Protection device and terminals

CAUTION to reduce the risk of fire, connect only to a circuit provided with branch circuit protection with maximum current rating per the table, below, in accordance with the National Electrical Code, ANSI/NFPA 70.

	Input (for single input unit)				
UPS models	Nominal Current	Maximum Current	OCP Current	OCP Device rating	Bolt Size (in.)
65 kVA	78.2A	89A	111.3A	125A	5/16
80 kVA	96.3A	109A	136.3A	150A	5/16
100 kVA	120.3A	136A	170A	175A	5/16
125 kVA	150.4A	160A	200A	200A	5/16

OCP= Over Current Protection Device, must be rated for branch circuit protection.

	Rectifier Input (for dual input unit)				
UPS models	Nominal Current	Maximum Current	OCP Current	OCP Device rating	Bolt Size (in)
65 kVA	78A	90A	112.5A	125A	5/16
80 kVA	94A	109A	136.3A	150A	5/16
100 kVA	118A	136A	170A	175A	5/16
125 kVA	147A	160A	200A	200A	5/16

	Bypass Input (for dual input unit)			
UPS models	Nominal Current	OCP Current	OCP Device rating	Bolt Size (in)
65 kVA	78.2A	97.8A	100A	5/16
80 kVA	96.3A	120.4A	125A	5/16
100 kVA	120A	150A	150A	5/16
125 kVA	150.4A	188A	200A	5/16

	Output		
UPS models	Nominal Current	Bolt Size (in)	
65 kVA	78.2A	5/16	
80 kVA	96.3A	5/16	
100 kVA	120.3A	5/16	
125 kVA	150.4A	5/16	

CAUTION Output circuit protection requirement is determined by distribution circuit. Smaller wire may be used for load wiring if rated load current is not needed and the appropriate circuit protection is applied. Output circuit protection must be provided as a part of the installation.

Pag. 23 a 83 0MLMHTK65RUENUB

	Battery			
UPS models	Nominal Current	Maximum Current	OCP Device rating	Bolt Size (in)
65 kVA	127@480Vdc	159.5A@400.8Vdc	160A	3/8
80 kVA	156A@480Vdc	196.4A@400.8Vdc	200A	3/8
100 kVA	195A@480Vdc	235.8A@400.8Vdc	250A	3/8
125 kVA	244A@480Vdc	294.8A@400.8Vdc	300A	3/8

CAUTION: Input and output circuit protection must be provided by others as part of the UPS installation. (Refer to section 4.3)

NOTE: Cables and lugs are not supplied.

	Torque s	pecifications
Bolt Size	Torc	ue Load
5/16	10 lbf-ft	13.5 Nm
3/8	22 lbf-ft	30 Nm
1/2	37 lbf-ft	50 Nm

1.1.4 Differential (GFI)

If the UPS protection against electric shock uses a differential current device (Ground Fault Interrupter), it will have to have the following characteristics:

- Sensitivity 300mA
- Sensitive direct current and unidirectional components (class A or class B)
- Insensitive to transient current pulses
- Delay greater than or equal to 0.1 s.

neutral

In the standard version without an isolation transformer on the bypass line, the neutral from the mains power supply is connected to the output neutral of the UPS.

THE ELECTRICAL SYSTEMS UPSTREAM AND DOWNSTREAM OF THE UPS MUST BE IDENTICAL (DELTA-DELTA or WYE-WYE)

When operating in the presence of mains supply, a differential breaker (GFI) installed on the input will intervene as the output circuit is not isolated from the input circuit.

When operating without mains supply (from battery) the input differential breaker will intervene only if it is able to switch as a result of leakage current without any voltage at its poles (for example a differential breaker with an auxiliary relay is not suitable). However it is possible to install additional differential breakers on the output of the UPS, possibly coordinated with those on the input.

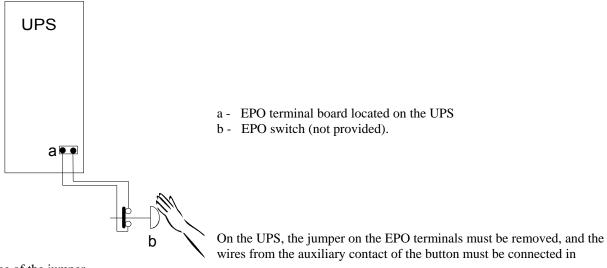
Pag. 24 a 83 OMLMHTK65RUENUB

1.1.5 Backfeed protection

The UPS is provided with a redundant device to prevent voltage backfeed on the input line due to an internal fault. This protection device works by switching off the inverter in case of the fault current on the bypass line during operation from the inverter. If the fault occurs when the UPS is operating from the battery, the load will not be powered.

The control logic allows the function of the relay to be configured, for example for the backfeed alarm, and then the dry contacts can be used for triggering a switch located on the UPS input.

1.1.6 Emergency power off device (EPO)


The UPS has an EPO (Emergency Power Off) function.

In the event of an emergency using this function the UPS shuts down the rectifier, inverter, static switch and completely disconnects the power to the load

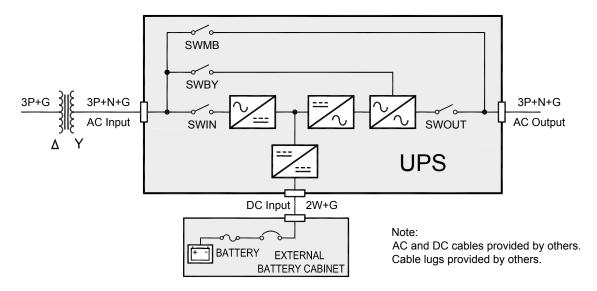
The Output circuit of the UPS should not be considered safe, unless the UPS is Off and the input power source to the UPS has been removed by opening the input disconnect devices which are external to the UPS, including the battery.

This function can be activated from the button (under a hinged clear plastic cover) on the control panel or by a remote contact. This button must be depressed and held down until the UPS shuts down.

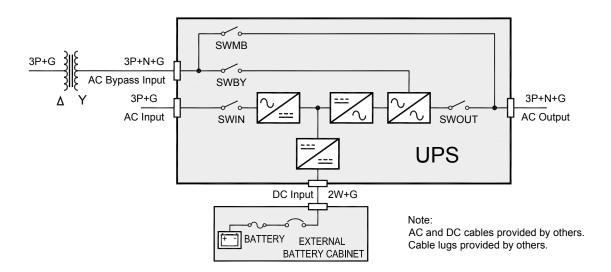
To connect an external EPO to the remote contact follow this procedure.

place of the jumper.

The contact must be closed with the button in the rest position and must open when the button is pressed.


Mains, load and battery connections

Input line without neutral

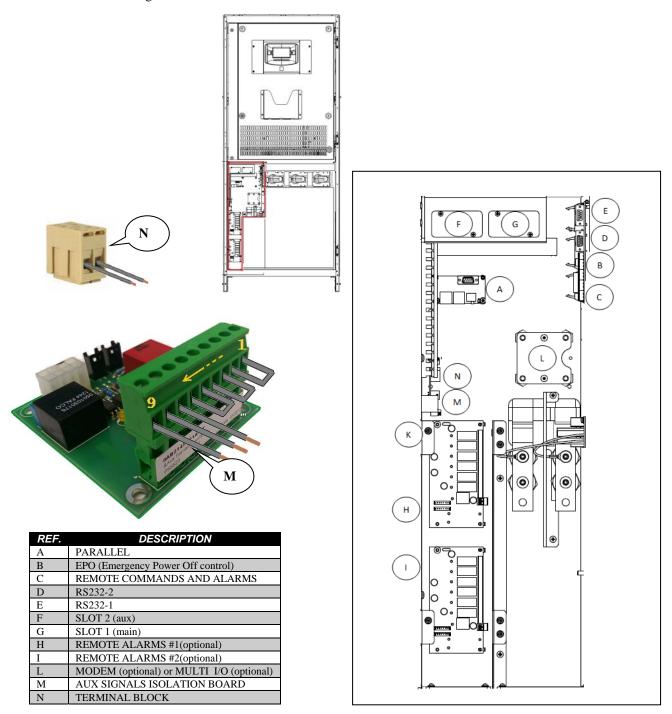

A transformer must be inserted either on the mains supply line or on the bypass line (as shown in the drawings) if the load requires a neutral.

Pag. 25 a 83 0MLMHTK65RUENUB

Schematic diagram: Single power line without neutral from the source

Schematic diagram: Main power supply and separate bypass without neutral from the source

Battery connections



The Battery connection should be made in accordance with the manual for the battery cabinet, document number 0ML190480RUENUB. This manual covers battery model numbers BBX 1900 480V UL L6 3U and BBX 1900 480V UL L8 3U, 55Ah and 100Ah respectively.

Pag. 26 a 83 0MLMHTK65RUENUB

Connection of signals and remote commands

In order to access the interface cards, open the door and remove the protection panel secured with screws (K) as shown in the drawing:

AUX SIGNALS ISOLATION BOARD allows receiving external auxiliary contacts and keeping them isolated from the UPS internal circuits making easy connections in case of paralleling of the units. Jumpers AUX (SWBATT, SWMB, SWOUT) must be connected to the terminal of the board if no external auxiliary contacts are presents.

Pag. 27 a 83 OMLMHTK65RUENUB

	Connector J1 of Aux signals isolation board			
PIN	NAME	TYPE	FUNCTION	
1	AUX SWBATT	INPUT	Normally open: dry contact used to indicate	
2	AUX SWBATT RETURN	INPUT	when SWBATT is closed	
3	AUX SWMB	INPUT	Normally close: dry contact used to indicate	
4	AUX SWMB RETURN	INPUT	when the SWMB EXT is closed	
5	AUX SWOUT	INPUT	Normally open: dry contact used to indicate	
6	AUX SWOUT RETURN	INPUT	when the SWOUT EXT is closed	
7	BAT. TEMP. SENSOR	INPUT	tomporature ambient from battery against	
8	BAT. TEMP. SENSOR	INPUT	temperature ambient from battery cabinet	
9	GROUND	INPUT	Cable of temperature sensor shield to ground.	

Terminal block			
PIN	NAME	TYPE	FUNCTION
1	SWBATT coil	OUTPUT	Normally Open dry contact: used in a circuit at
2	SWBATT coil	OUTPUT	24Vdc for supply SWBATT coil.

	Torque specifications for connector J1 on aux signals isolation board			
Wire size range	Torque Load			
#30 -12 AWG	0.37 – 0.44 lbf-ft 0.5 – 0.6 Nm			
	Torque specifications for terminal blocks on customer interface board			
Wire size range	Torque Load			
#22 -12 AWG	4.4 lbf-ft 6 Nm			

Pag. 28 a 83 0MLMHTK65RUENUB

1.1.7 Parallel (optional)

-A- To be used for the connection of UPS's in a parallel configuration. See the chapter "parallel version" on page 41.

1.1.8 REMOTE COMMANDS, ALARMS AND EPO

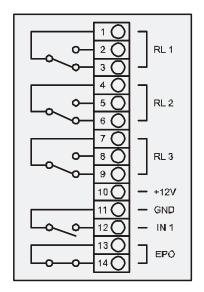
-C- The card is equipped with a 14 positions terminal board.

CIRCUIT PROVIDED. CONNECT TO SELV CIRCUIT ONLY.

POWER SUPPLY 1 power supply 12Vdc 80mA (max.) [pins 10 and 11]; ALARMS 3 FORM C dry contacts for alarms (rating 30 V AC / DC, 1 A);

COMMAND 1 command programmable by panel [pins 11 and 12];

		Inte	rface REMOTE COMMAND ALARMS AND EPO
PIN	NAME	TYPE	FUNCTION
1,2,3	RL 1	OUTPUT 1	Bypass / fault, the contact changes position when the UPS switches the load onto the bypass line either during normal operation (e.g. due to overload) or as a result of a fault in the inverter stage. See Note below
4,5,6	RL 2	OUTPUT 2	Battery discharging, the contact changes position when the load is powered from the battery due to a mains power failure
7,8,9	RL 3	OUTPUT 3	End of battery discharge, the contact changes position when, during a mains outage, the remaining time for battery discharge has reached the minimum value defined. Once this time has passed, the load will remain unpowered (the factoryset end of discharge pre-alarm value is 5 minutes)
10	+12V	POWER	Power supply +12Vdc 80mA (max.) [pins 10 and 11]
11	GND	POWER	
12	IN 1	INPUT 1	Inverter OFF. Connect pin 11 to pin 12 (for at least 2 seconds). - In "NORMAL OPERATION", If the INVERTER OFF command is received, the UPS switches the power supply of the load onto the bypass line (load is not protected should there be a mains outage). - In "EMERGENCY OPERATION", If the STOP INVERTER command is received, the UPS shuts down (load is not powered). See Note below
13,14	EPO	INPUT EPO	If the jumper on the connector is opened, the voltage on the UPS output will be cut. The UPS is factory-fitted with the EPO terminals short circuited. If this input is used, the UPS can be shut down in a hazardous situation from a remote position simply by pressing a button.



Warning: if only the mains power supply is removed, for example by opening the switch of the power supply panel, as a means for shut down the UPS in an emergency the UPS will keep the load powered using the energy stored in the batteries.

Other functions of the three relays and the commands may be programmed via the display panel. The ALARMS and the COMMANDS are factory-set in the following way:

Pag. 29 a 83 0MLMHTK65RUENUB

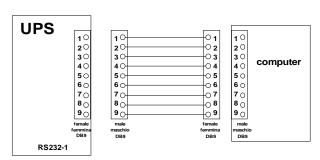
The position of the contacts as shown is without the alarm present. The contacts rating is 24Vac - 1A.

Please refer to APPENDIX A for the list of alarms and commands that can be programmed. The change of function can be made by authorized technical support personnel.

1.1.9 RS232

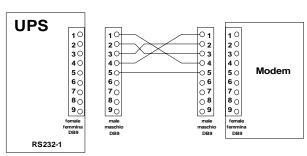
SELV CIRCUIT PROVIDED. CONNECT TO SELV CIRCUIT ONLY.

two DB9 connectors are available for RS232 connection. The factory-set transmission protocol is as following:

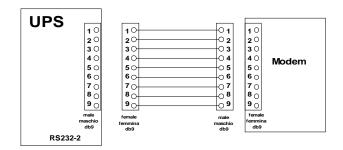

Baud rate	Parity	Data bits	Stop bit
9600	NO	8	1

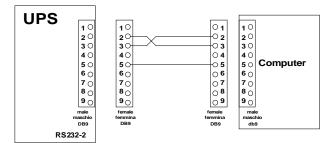
The BAUD RATE range is from 1200 to 9600, can be changed on the menu by the CONTROL PANEL.

The recommended values are as in table


Length cable (meters)	50	100	200	300
Baud rate	9600	4800	2400	1200

See the diagrams below for the connection procedure.




DB9 female RS232-1

-D- For connection with a computer, use a standard RS 232 cable. See the diagram for connection with a modem.

Pag. 30 a 83 0MLMHTK65RUENUB

DB9 male RS232-2

- ${\bf E}$ - For connection with a modem use a cable standard.

See the diagram for connection with a modem.

1.1.10 SLOTS 2-1, the following cards may be inserted (optional):

-F, G- NetMan (on SLOT 1 main or SLOT 2 aux)

SELV CIRCUIT PROVIDED. CONNECT TO SELV CIRCUIT ONLY.

Device for management of the UPS's on the Ethernet. It can send information on the status of the device with different protocols:

TCP/IP UDP	compatible with Watch&Save		
SNMP	for communications with NMS or with PowerNETGuard		
HTTP	to display the status with a browser		
TFTP	to configure or update the device when connected to the		
	network		

The main function of this device is to integrate the UPS into the LAN network ensuring a high level of reliability of communication with the server to enable full management and control of the UPS.

- MULTICOM card (on SLOT 1 main or SLOT 2 aux)

This device may be used to:

- add a serial port to the UPS;
- monitor the UPS using MODBUS/JBUS protocol on RS485 or PROFIBUS (Multicom 401)

Note: each card connected precludes the use of a standard RS232 port, as follows.

The use of SLOT 1 (main) inhibits the use of RS232-2

The use of SLOT 2 (aux) inhibits the use of RS232-1

For the full and updated list of communication accessories, please visit the website www.riello-ups.com.

Pag. 31 a 83 0MLMHTK65RUENUB

1.1.11 REMOTE ALARMS (2 optional cards)

SELV CIRCUIT PROVIDED. CONNECT TO SELV CIRCUIT ONLY.

- H, I - 6 output (relays): Form C dry contacts for alarms, rating 30 VAC/DC, 1A max, (programmable by display panel), 2 inputs (programmable by display panel) and 1x 12V DC 100mA max auxiliary input.

1.1.12 MODEM (optional)

-L- Model compatible with the communication standards between the UPS and the software provided. Note: the modem must be connected to an RS232 port (D and E), a standard RS232 port may not therefore be used.

1.1.13 MULTI I/O (optional)

-L- The function of this accessory is to convert external signals from the UPS (e.g. temperature of environment, temperature of battery premises, etc.) into signals by means of relay contacts or via serial output RS485 in MODBUS protocol.

It has the following characteristics:

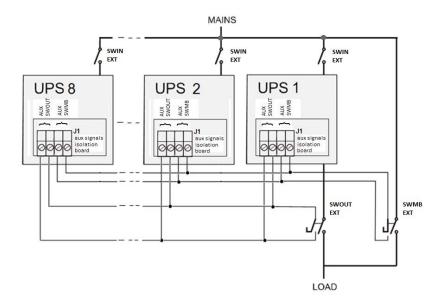
- 8 inputs (e.g. humidity, smoke, etc. sensors)
- Communication with the UPS via serial port
- 8 relays configurable with 8 events on the UPS
- RS232 output port with configurable messages
- RS485 output port MODBUS /JBUS with configurable messages.

1.1.14 Battery temperature sensor (optional)

-M- The UPS has a connector for connection of the kit, which consists of a sensor to be placed inside the battery cabinet. The use of the temperature sensor allows the UPS control logic to adjust the values of the charge and voltage according to the working temperature of the battery.

1.1.15 Battery temperature alarm (optional)

The battery temperature alarm is active only when connected to the aforementioned external probe, which measures the temperature within the battery enclosure. The temperature value to start the alarm can be changed with the following procedure:


- 1) The following sequence of numbers must be entered into the display to access settings. Press the front panel display buttons 3, 5, 151515, 7
- 2) Press 3, 5, 327171, 7 to access the battery temperature settings
- 3) Press key 5 or 6 as necessary to adjust the minimum battery temperature [default:0; range:0-10]
- 4) Press key 7 or 8 as necessary to adjust the maximum battery temperature [default:50; range 20-60]
- 5) Press 1 to exit from the battery temperature menu
- 6) The alarm temperature value is now set

Pag. 32 a 83 0MLMHTK65RUENUB

1.1.16 SWOUT and SWMB aux.

The auxiliary contacts of the external SWMB and of the SWOUT shall be connected to the board of each UPS in parallel, as depicted in the diagram below.

Note: MASTER HP-UL series have input terminals (for acquiring the status of aux contacts) isolated from the internal circuits of the UPS. This will result in to be sufficient a single aux contact electrical connection of the External switch brought to each UPS of the parallel system.

The auxiliary contacts of SWOUT EXT and SWMB EXT must be connected to terminal J1 on aux signals isolation board. The purpose of this board is to isolate the internal circuits of UPS, so that, in case of parallel of UPS, one auxiliary contact of an external switch is sufficient to be acquired by all the UPS in parallel.

For safe removal, the UPS must placed onto bypass, closing SWMB EXT, opening SWIN EXT and SWOUT EXT and disconnecting the UPS.

Aux Contact SWOUT EXT must be N.O. (same position of the power contacts) while aux contacts SWMB EXT must be N.C., (opposite position of power contacts).

Note:

- the auxiliary switch of SWMB EXT must open in advance, before closing the power contact
- the auxiliary switch of SWOUT EXT must close in advance, before opening the power contact

Pag. 33 a 83 0MLMHTK65RUENUB

Start-up procedure

mains power supply

The mains power supply must be present in order to start up the UPS

The UPS output terminals will be powered in this step and all loads connected will receive voltages. All users must therefore be warned before carrying out the start-up procedure.

BATTERY CABINET (if present)

The battery cabinet <u>must be</u> provided with a disconnect device for it to be connected to the UPS. This disconnect device <u>must</u> be closed <u>only when</u> the UPS is started up regularly. During the UPS start-up phase the disconnect device <u>must</u> remain in the open position.

Once the INPUT/OUTPUT and battery cables have been connected to the UPS terminals and before putting the switch cover back in place, check that:

- all the input/output terminals are securely tightened;
- all the fuse holders have the fuse inserted, and are in the closed position;
- the input and output ground conductor is connected correctly (yellow/green earth grounding cable);
- check the polarity of the battery connections.

Replace the switch cover.

For the first start-up, the following operations should be carried out in this order:

- 1) close input power switch SWIN,
- 2) press button 1 twice, select the language and then press button 8 to return to the basic menu,
- **3)** after a few seconds, messages on the status of the UPS will start to be shown on the first line of the display panel; these will include the following message relating to the battery disconnect:

Wait: DO NOT connect the BATTERY

- 4) close the static switch bypass line input switch SWBY,
- 5) close the static switch output switch SWOUT.
- 6) do not close the external battery circuit breaker/disconnect device.

Once these operations have been carried out, the fans will be operating and the sound of the buzzer will be heard.

Close the external battery circuit breaker/disconnect <u>only when the following message is no</u> <u>longer shown</u> on the first line of the display panel:

Wait: DO NOT connect the BATTERY

Note: If multiple battery cabinets are present, all breakers must be closed within one minute after the *Wait: DO NOT connect the BATTERY* message disappears. If this time constraint is a problem, do the following:

- 1. Disable the automatic battery test by pressing button 3 then 5 on the control panel, followed by entering the code 323232.
- 2. Close all the battery cabinet circuit breakers
- 3. Re-enter the code 323232 to enable the battery test.

Configure the value of the battery capacity according to the instructions on page 66.

After the start-up operations have been completed, perform a manual battery test:

Press button 3 and then 2 on the control panel. At the end of the test, after about 8 seconds, with the UPS started correctly and with the battery connected on the signals and control panel, the two green input and output LED's must be steady light .

Pag. 34 a 83 0MLMHTK65RUENUB

SWMB

The mechanical bypass switch SWMB must not be closed during normal operation of the UPS. SWMB should only be closed during UPS maintenance operations in order to keep the load powered (see the instructions on page 37).

When the UPS is first started up, it is in on-line mode (see page 36). See pages 36 and 72 to set Standby-on / Smart active operating mode.

configurations

Contact the factory for other operating modes.

Once the UPS has been installed, check that the message NORMAL OPERATION appears on the first line of the display panel.

1.1.17 Battery operation check

Carry out only with battery present.

After installation, a mains outage even of just a few seconds can be simulated to check operation. The battery does not need to be charged to perform this test.

With the UPS in normal operation, open switch SWIN located at the UPS input (rectifier). The buzzer should sound immediately. The display on the CONTROL PANEL should appear similar to the picture shown on page 56 of this manual (with 5=ON). OUT. (Green LED) and BATT. (Yellow LED) on the Signals and Commands Panel should be ON.

Check that the load connected to the UPS is powered. In this mode, the power supplied to the load is being provided by the batteries. Close the input power switch SWIN to return to normal operation. The IN. and OUT. LEDs on the CONTROL PANEL will be GREEN. The batteries will recharge automatically.

Battery backup time

Before a full battery discharge test can be carried out, the battery must be charged to full capacity. Charge for at least eight hours for standard backup times or longer for batteries sized for long backup times to allow the batteries to charge.

The backup time obtained on the first discharge may be slightly less than expected; a number of charge and discharge cycles needed to improve this value.

Battery capacity does not remain constant over time, but increases after some charge and discharge cycles; it then remains constant for several hundreds of cycles before decreasing permanently. Battery life will be reduced if the battery is operated at temperatures greater than 20° C.

Operating modes

The various UPS operating modes are described below.

setting

The operating mode is set when the UPS is installed; it may be changed subsequently but this should always be done by a *qualified service technician*.

Pag. 35 a 83 0MLMHTK65RUENUB

1.1.18 On - line - factory setting -

Load is always powered by the inverter, in the event of an input mains failure the load continues to be powered from the inverter using the energy stored by the batteries.

On – line:

The load is always powered by the inverter, with stabilized voltage and frequency, using the energy from the mains power supply (INPUT). If there is a fault in the INPUT, the UPS will switch to the batteries in zero time and the batteries will supply energy to the inverter to keep the load powered for the backup time of the batteries. When the INPUT is restored the batteries will be automatically recharged by the rectifier.

1.1.19 Standby-on / Smart active

Load is powered from the mains, in the event of an input mains failure the load is powered from the inverter using the energy stored by the batteries.

In <u>Standby On</u> or <u>smart active</u>, the load is powered from the bypass line (if the mains power supply is in the range); if there is a fault on the mains power supply the load switches automatically onto the inverter, powered by the battery

Standby On:

The switch from inverter to bypass line may be immediate (time set = 0) or delayed (up to 180 minutes). For the switch to take place, the bypass line must be in the range for the delay time set. In $\underline{Standby\ On}$ mode, the rectifier remains powered and keeps the batteries charged. If the bypass line voltage or frequencies are out of the range, the load is automatically transferred onto the inverter output. With $\underline{Standby\ On}$ operation, the losses of the system can be reduced, leading to considerable saving. Before using this function it must be guaranteed that, in the event of a mains outage, the load powered can tolerate an interruption of the power supply of about 2-5 ms, and that it can tolerate any mains disturbances.

This operating mode is normally used for loads that are not much sensitive. While operating in this mode, the letter *N* will be displayed on the second line of the BASIC MENU, near the UPS model.

Smart Active:

The UPS automatically activates <u>On-Line</u> or <u>Standby-On</u> operation according to the quality of the power supply (see the "PERSONALIZ. SMART ACTIVE OPERATION" menu). When Smart Active mode is enabled, the mains is monitored for a few minutes, at the end of which if voltage is in the acceptable range, the load is transferred to the bypass line. If mains is out of the range the load remains powered by the inverter and the bypass line is monitored for about one hour before retransfer the load to bypass if no disturbances occurred. If any, the cycle of monitoring the line for one hour restart. The main advantage of this operating mode is the efficiency, greater than 98%. While operating in this mode <u>SMART A</u> will be displayed on the first line of the BASIC MENU and the letter <u>M</u> will appear in the second line of the BASIC MENU, near the UPS model.

1.1.20 Standby-off (with mains present the load is not powered)

Load is not powered, in the event of an input mains failure the load is powered from the inverter using the energy stored by the batteries.

Pag. 36 a 83 0MLMHTK65RUENUB

Standby-Off:

If there is a mains power supply, UPS output is zero. The RECTIFIER remains on and keeps the battery charged. The output voltage is only present when the mains power supply fails. The system remains with output voltage = 0V while the voltage and the input frequency are within an acceptable range. When the mains power supply is restored, the UPS is automatically reset to $\underline{Standby-Off}$ mode.

When operating in this mode the letter F will be displayed on the second line of the BASIC MENU, near the UPS model.

1.1.21 Stabilizer (operation in on-line mode without battery)

Load is powered from the inverter, if there is a mains failure the load is not powered, the batteries are not present.

Stabilizer:

This mode of operation makes the UPS a power conditioner with no backup capability. The load is always powered through the inverter, with stabilized voltage and frequency, using the energy from the input mains. The batteries are not present. In the event of an input mains failure, the output of the STABILIZER is not powered. In this mode the letter *S* is displayed on the second line of the BASIC MENU, near the UPS model.

Personalisation's

Using the CONTROL PANEL (from the basic menu press keys 3 and 5 and the access code 436215), the following factory-set electrical parameters can be modified within a limited range:

- Language (see page 61),
- value of the RATED OUTPUT VOLTAGE (see page 66),
- BATTERY parameters (see page 66),
- end of battery discharge pre-alarm (see page 67),
- shutdown due to power lower than a set value (AUTO-OFF in power) (see page 69),
- daily programmed shutdown (AUTO OFF time) (see page 69),
- acceptable frequency and voltage range on the BYPASS line (see page 70),
- bypass frequency range (see page 70).
- modem configuration (see page 70),
- RS232-1 and RS232-2 ports (see page 71).
- standby-on operation (see page 36),
- Smart active operation (see page 72),
- date and time (see page 75).

Procedure to transfer the load from UPS onto maintenance bypass.

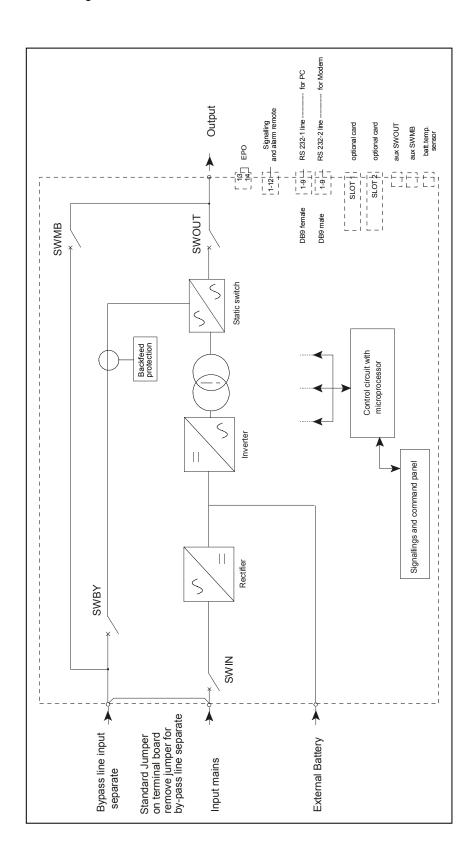
Procedure not applicable in the frequency converter

With several UPS connected in parallel, follow the procedure described in the section on "bypass for maintenance" of chapter "Parallel version".

There are three types of bypass: static bypass, mechanical bypass, and the optional maintenance bypass. The purpose of bypass is to provide a path for electrical power to flow from the input to the load. The bypass path provides no conditioning of the power, so any disturbance at the source will be present at the load. The reasons to use the bypass path include: failure of inverter, overload of inverter, reduce losses and save energy, and to allow maintenance operations on the UPS. If the UPS is part of a parallel system, additional concerns and procedures regarding bypass apply. These issues are covered in Section 5.

Backfeed protection is provided to assure that the inverter output can never be connected to a de-energized bypass input, even if there is a failed component in the UPS. This is to protect service personnel working on circuits that

Pag. 37 a 83 0MLMHTK65RUENUB


connect to the bypass input. As a part of backfeed protection, it is necessary that several signal wire connections exist between the UPS an external optional Maintenance Bypass Cabinet (MBS). The proper wiring of these connections shall be described in the User's manual for the MBS. These connections carry signals that avoid operation of the MB breakers such that backfeed is prevented. If the breakers are properly sequenced per the instructions that follow, this protection will not be apparent to the user.

Static bypass is an automatic electronically switched bypass path. The load is transferred on it when the inverter is overloaded or failed. Also, the static bypass is the normal source of power to the load when the UPS is in "Standby On" or in "Smart Active" Mode, when the bypass source is out of the range, the inverter shall be loaded. Generally, the static bypass is automatically controlled, but some manual control is possible (refer to section 6.2.4.18). The static bypass can be disabled by opening switch SWBY, but this should only be done at the operator's risk beacuse, in the event of an inverter overload or an inverter failure the load will be lost. Also, if the static bypass is disabled, it is not possible to transfer to and from mechanical bypass without load power interruptions.

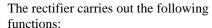
The Mechanical Bypass Switch "SWMB" is physically connected in parallel with the Static Bypass Switch, but it is operated via rotation of a manual handle. Before operating SWMB, the operator should verify that the bypass source is in the acceptable range: as a minimum check, verify that the bypass source lamp (LED1 at upper left) on the front panel is steady green and that the legend "BYPASS VOLTAGE FAIL" is not present on the display. If the load is already on the Static Bypass line, the yellow "Load on Bypass" lamp (LED4, upper right) will be steady (or flashing if bypass overload). Refer to Section 6 regarding the indicators. After SWMB is closed, the yellow Load on Bypass lamp will flash and the inverter will stop. If necessary, the UPS can be completely shut down without interrupting power to the load: Leave SWMB closed, but open SWIN, SWBY, SWOUT, and all battery disconnect breakers. CAUTION: while operating the load through SWMB, battery operation is not possible, so the power to the load rely on the mains presence. To return to normal operation, close SWIN, SWBY, and SWOUT, then open SWMB. When the display message: "Wait: DO NOT connect the BATTERY", disappear, the disconnect breakers in each battery cabinet should be closed. Refer to Section 4.6 for the proper and complete procedure for connecting the battery.

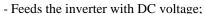
An external Maintenance Bypass Switch Cabinet (MBS) can facilitates servicing the UPS without removing power from the load. When using an external MBS refer to the user's manual for a proper installation and use in conjunction with the UPS.

Pag. 38 a 83 0MLMHTK65RUENUB

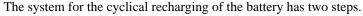
Pag. 39 a 83 0MLMHTK65RUENUB

Components of the block diagrams


The UPS is made up of the following sub-assemblies:


IGBT RECTIFIER

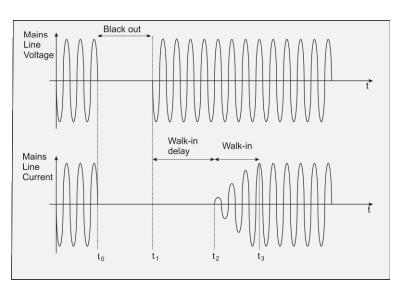
This represents the input stage and its function is to convert the AC voltage of the power supply line into DC voltage.


Rectifier start-up can be programmed from the display panel. The following in particular can be set:

A delay in start-up t0-t1 from 0 to 120s (This allows a non simultaneous start-up of several UPS's connected to the same mains); The time for the start-up, t1-t2, from 0 to 30s (this avoids overloading a generator that may be located at the UPS input).

- Automatically charges the battery;
- Optimizes the input power factor by means of an automatic charging system.

The first step consists of recharging the battery with limited current and increasing voltage (up to the preset charge value "Vb_max"). This step is maintained until the battery is fully charged (Batt=100% Ah), which is detected by measuring the current entering the battery.


In the second step, with the battery fully charged, the battery charger is deactivated so as to remove any residual current in the battery in order to lengthen its lifespan and to prepare the rectifier for the optimization of the input power factor.

At this point a 24 hour cycle is automatically initiated to check the state of charge of the battery, initiate an automatic momentary discharge to verify the condition of the battery, and recharge to full capacity. See page 63 of this manual to customize or disable this function.

BATTERY

This is the energy reserve to power the load when power is no longer supplied to the UPS. The batteries supplied in the external RPS Battery Cabinet are sealed and maintenance free. Each RPS Battery Cabinet contains a circuit breaker disconnect. If a battery pack other than the RPS Battery Cabinet is used then the battery supply *must be provided with* a circuit breaker device (with auxiliary contact available). See manual battery RPS

When there is no MAINS voltage present (black out), or when the mains goes outside of the specified limits (frequency or voltage), the load is powered with the energy accumulated in the battery. In this phase of operation the energy required by the equipment connected to the UPS output is supplied by the battery, which has previously been charged. The DISPLAY PANEL located on the front of the UPS shows the expected residual BACKUP TIME, calculated according to the power applied and the state of charge of the batteries. The value provided is an estimate, since the power required by the connected load may change during discharging. The backup time can be increased by disconnecting some of the connected equipment. When the remaining backup time goes lower than the value preset as the END OF BACKUP TIME PRE-ALARM (factory-set at 5 minutes), the buzzer increases the sound frequency while the yellow BATTERY LED starts flashing; in this condition it is advisable to save any work in progress. At the end of battery discharge the UPS will interrupt the power supply to the loads. When the MAINS voltage is restored, the UPS automatically restarts and starts recharging the batteries.

Pag. 40 a 83 OMLMHTK65RUENUB

INVERTER

This is the output stage, its function is to convert the DC voltage from the RECTIFIER or from the BATTERY into stabilized sinusoidal AC voltage. The inverter output is isolated from the input and from the batteries by a galvanic isolation transformer. The inverter is always working; since the load connected to the UPS output is always powered by the INVERTER (in NORMAL OPERATION)

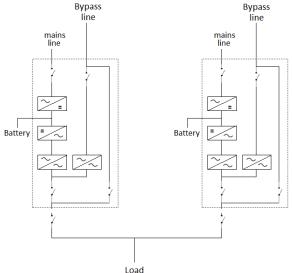
STATIC SWITCH

This device allows the synchronized switching, automatic or manual, and in zero time, of the voltage to the load from a protected source (inverter output) to an unprotected source (bypass line) or vice versa.

The UPS is provided with a device to prevent the backfeed of voltage to the input line after an internal fault, known as "BACKFEED PROTECTION".

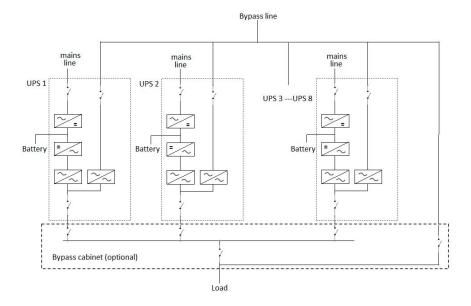
Mechanical BYPASS (SWMB)

This is a mechanical bypass switch. The UPS can be bypassed by closing SWMB and opening switches (SWIN, SWBY and SWOUT) while keeping the load on the output powered. This operation is necessary when maintenance operations must be carried out inside the equipment without interrupting the power supply to the load. The mechanical bypass switch is sized for the rated power of the UPS.


UPS in parallel configuration

1.1.22 Introduction

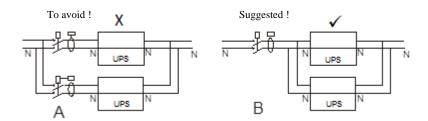
UPS's may be connected in a parallel configuration to increase both the reliability of the power supply to the load and the available output power. Up to 8 UPS's can be parallel-connected. It is recommended to connect units of the same power.


The load that can be applied to a system with several units connected in parallel may be greater than the load that can be supported by each individual unit, thanks to automatic load sharing. The reliability is only increased provided that the total power of the system with one unit deactivated remains greater than the required power. This condition can be achieved by always adding a redundant unit (*N*+*I*).

Having a redundant unit means having one more UPS than the minimum number of elements required to power the load, so that if a faulty unit is automatically excluded, adequate power is still supplied. The UPS's connected in parallel are coordinated by a card which ensures the interchange of information. The information is exchanged between the UPS's via a cable connecting them in a loop. The loop connection provides redundancy in the connection cable (communication in the cables between the individual

units). This is the most reliable means of connecting the UPS and also allows the "hot" insertion or disconnection of a UPS. Each UPS has its own controller that continuously communicates with the whole system so as to guarantee the operation of the system. The cable transmits the signals from a "Master" UPS to the other "Slaves" using an optically-isolated system in order to keep the control systems electrically isolated from each other. The operating logic envisages that the first unit that is activated becomes the "Master" and takes control of the other "Slaves". In the event of a fault in the "Master" unit, control is immediately switched to a "Slave" which then becomes the "Master". The current system provides basic operation, each unit having its own battery. The system may be personalized (by means of a code inserted on the display panel) with all the units connected to a single battery.

Pag. 41 a 83 OMLMHTK65RUENUB

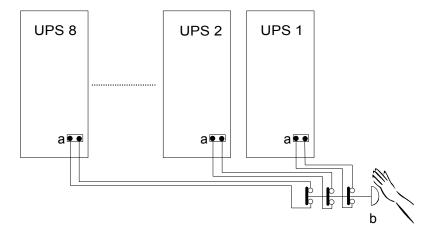

Electrical system set-up

All the information contained in the section on electrical system set-up in relation to the UPS remains valid with the addition of the information set out below.

1.1.23 Input

The instructions showed in the first part of the manual for a single UPS remain valid; each unit must be protected with equivalent fuses or switches.

1.1.24 Ground Fault



It is recommended that a Ground Fault Interrupter (GFI) device is implemented for safety. In order to avoid unnecessary interventions, versions with several parallel-connected devices must have a single GFI inserted at the input of the whole system, as shown in figure B.

Pag. 42 a 83 0MLMHTK65RUENUB

1.1.25 Emergency power off device (EPO)

When several devices are connected in parallel, the EPO command must be sent to all UPS's simultaneously, as shown in the figure below:

- a EPO terminal board on the UPS
- b EPO switch with auxiliary contacts (not provided).

The push-button must have the same number of auxiliary contacts as the number of parallel UPS's. Each UPS must have the jumper on the EPO terminals removed and the wires from the auxiliary contact of the button must be connected instead of the jumper.

The contact must be normally closed with the button in the rest position and be opened when the button is pressed. Installation of the EPO switch must be made with the UPS's turned off.

1.1.26 External maintenance bypass.

In some cases, in order to facilitate maintenance operations of the individual units making up the system, it may be advisable to install an external maintenance bypass.

The External Maintenance Bypass should be installed in accordance with the manual for the External Maintenance Bypass Cabinet

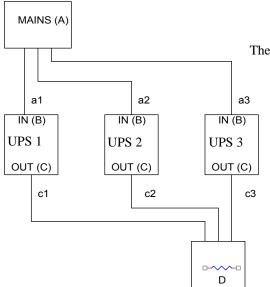
Mains, and load connections.

All the information contained in the section "Mains, load and battery connections" (page 25) in relation to the UPS remains valid with the addition of the information set out below.

1.1.27 UPS AC input / output power connection

Refer to the Electrical Connections (Section 4) of this manual for information on how to size the cables for **each UPS**.

phase L1 of the mains source must be connected to input phe



Phase L1 of the mains source must be connected to input phase L1 on all the UPS's; all the output phases L1 must be connected together and with phase L1 of the load. This rule must be followed for phases L2, L3 and for the input and output neutral.

Pag. 43 a 83 0MLMHTK65RUENUB

Parallel connect the UPS as follows:

- Connect the mains power supply phases L1, L2, L3, N to the *corresponding* input phases of each UPS L1, L2, L3, and N.
- Connect the load phases L1, L2, L3, N to the corresponding output phases of each UPS L1, L2, L3, and N.

The figure shows an example of three units connected in parallel.

- A) Mains power supply line
- B) UPS input terminals
- C) UPS output terminals
- D) Load
- (a1, a2, a3, c1, c2, c3) length of cables (see below)

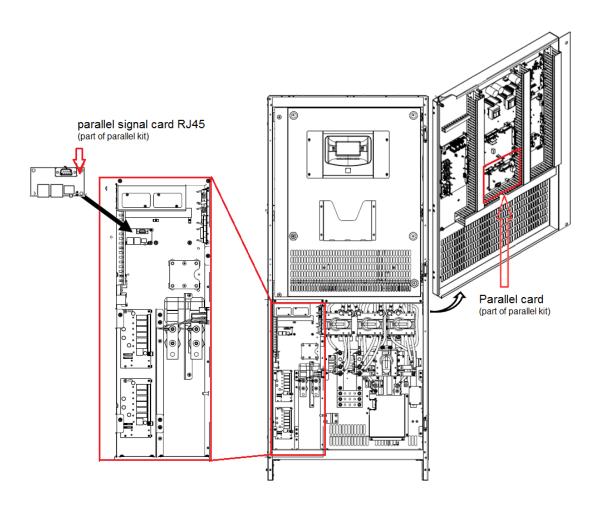
Length of cables rule

The sum of the lengths of the mains power supply and output cables must be the same for all units. With reference to the above drawing, these must be: a1+c1 = a2+c2 = a3+c3

a = length of input line cables

c = length of output line cables

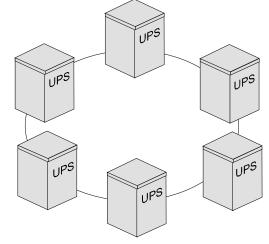
The length of cables rule must also be followed with separate mains power lines: the lengths of the cables of the bypass line + output line must be the same between all the UPS connected in parallel.


Lack of compliance with this rule may cause a current imbalance between the UPS's when the load is powered through the bypass line.

An overload on the bypass line of one UPS will lead to a deterioration of the components on that line, both internal and external to the UPS.

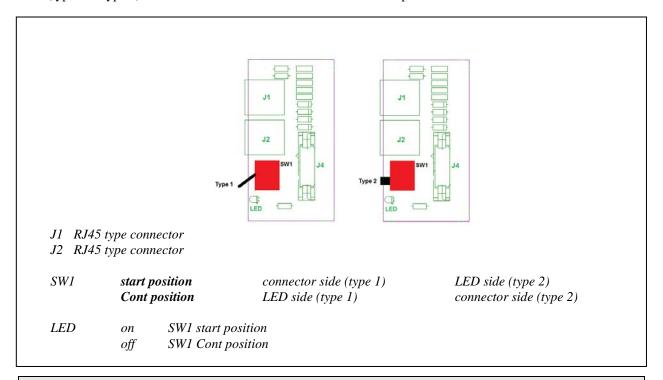
Pag. 44 a 83 0MLMHTK65RUENUB

1.1.28 Connecting the Parallel Card (option)


The UPS is supplied with the parallel control cards on request or the parallel kit is provided. For all details about installations of parallel card and parallel signal card RJ45 refer to the manual "Parallel kit UL"

Connection of signals

The signals of several parallel UPS's are connected in a closed loop configuration; if the loop is interrupted at any point, either due to a fault or for maintenance, operation of the system is not compromised, and the system continues to operate normally, as will be shown repeatedly below.


The various UPS's are connected through the "signals RJ45-flat-adapter" parallel card, located in the lower part of the UPS (in the area for signal and command connections as shown in the section on SIGNALS and REMOTE COMMANDS).

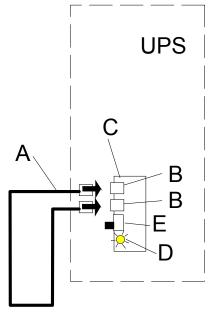
Pag. 45 a 83 0MLMHTK65RUENUB

- RJ45-flat-adapter signals parallel card.

<u>Note:</u> The UPS may be provided with one of two versions of the parallel card which differ in the type of switch used (type 1 or type 2). The difference between the two switches is the position of the control lever.

Firmware update

All the parallel-connected UPS's must have the same firmware version. Press key 7 from the basic menu on the display panel to display the firmware version installed.

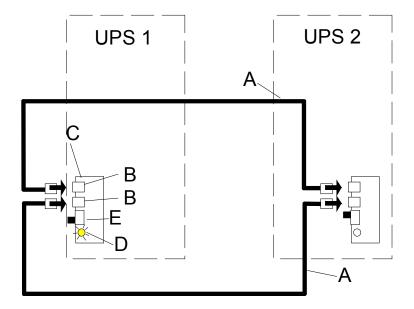

For the expansion of an existing system, check that the system has the same firmware version as the new UPS. Consult the factory if firmware versions are different.

Using the cable with two RJ45 terminals provided with each UPS (\underline{A}), make the connections as shown below:

Single UPS configured in parallel

If it is required to use a single UPS but configured as a parallel unit, the signal card must be jumpered with the cable provided as shown below.

- A UPS PARALLEL CABLE
- B RJ45 type connector
- C RJ45-flat-adapter signal parallel card
- D LED on
- E SW1 in start position

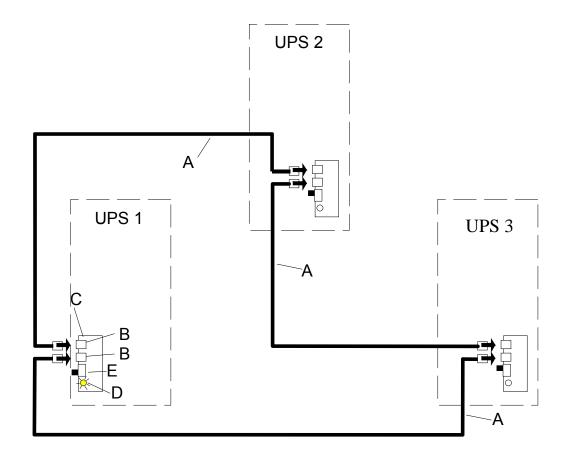


Two UPS's in parallel

Pag. 46 a 83 0MLMHTK65RUENUB

	UPS 1	UPS 2
LED (D)	ON	OFF
SW1 (E)	START	CONT

Note: 2 RJ45 cables are required for loop configuration. System will not start up unless 2 cables are installed.



Pag. 47 a 83 0MLMHTK65RUENUB

-Three UPS in parallel

	UPS 1	UPS 2	UPS 3
LED (D)	ON	OFF	OFF
SW1 (E)	START	CONT	CONT

Note: 3 RJ45 cables are required for loop configuration. System will not start up unless 3 cables are installed.

To add other parallel UPS's, a "UPS PARALLEL CABLE" must be added for each new UPS connected.

The signal connection must not be removed when one UPS is shut down

Start-up procedure

Before starting up the whole system for the first time, some tests have to be performed to check that the UPS's are connected to each other correctly.

- A) Open all the switches and disconnects on the UPS's (SWIN, SWBY, SWOUT and SWMB) and on the battery cabinets.
- B) Close SWMB on one unit and check that on all the units:
 - ☐ The voltage present between the corresponding input and output terminals (L1-L1, L2-L2, etc.) of each UPS is <2Vac. If not, check that the UPS's are connected to each other correctly.
 - Once the test is completed, open SWMB.
- C) Start up UPS1 by closing SWIN, SWBY and SWOUT. After a few moments, messages on the UPS status will start to scroll across the first line of the display panel. This will include the following message regarding the battery connection:

Low Bat Charge or Close FBAT

- D) Close SWIN, SWBY on all the other UPS's.
- E) Check that all the parallel-connected UPS's are on.

Close the circuit breaker/disconnect on the battery cabinets <u>only when the following message is no longer shown</u> on the first line of the display panel:

Wait: DO NOT connect the BATTERY

FOR OPERATION WITH A SINGLE BATTERY ONLY

Check the letter "X" on the second line of the display panel:

Example: "UPS type", "X" OUT=YYY%VA, BATT=YYY%Ah, 5=ON(or OFF)

Note: the UPS with a capital "X" (B or P) is the MASTER unit

The "X" on the MASTER unit may be:

 \square X= B, the parallel battery code has already been inserted.

Only the battery capacity value has to be inserted (see below).

 \square X= P the parallel battery code must be inserted by pressing keys 3, 5 in sequence on the control panel and the code 467123 (repeat the same sequence to disable the parallel).

The UPS's connected to the one in which the code is inserted will be automatically configured through the parallel cable (the letter "b" will be displayed on all the UPS's).

This configures the value of the battery capacity only; this value must be inserted on the MASTER UPS, which will send the information to the other units via the signal cable.

F) Close SWMB of UPS 1 and check that the whole system switches onto the bypass line (the bypass LED on UPS1 will flash while it must be on steady on the other UPS's), then open switch SWMB again. Wait a few seconds then check that the UPS1 returns to "NORMAL OPERATION". Repeat this operation for the other units connected.

If this check is positive, close SWOUT on all the units. Replace the switch block on all the SWMB's so that they are blocked in the open position. The red levers allow for installation of padlocks.

- G) At the end of the start-up phase, all the UPS's must be in the "NORMAL OPERATION" condition.
- H) Wait approx. one minute from the insertion of the last UPS, then check that with the load not connected the output power indicated by each unit is <3%.
- I) Connect the load to the output, wait approx. one minute and then check that the power shared between the various units is within +2%.

Pag. 49 a 83 0MLMHTK65RUENUB

Operating modes

Several UPS units connected in parallel share the current absorbed by the load between them.

In a system with several UPS's connected in parallel, there is a single MASTER unit and the remaining units will be SLAVES. The UPS's are all exactly the same and the MASTER is chosen on start-up. The MASTER unit is shown on the display panel by the capital letter "P" (or "B" in the case of a single battery). The MASTER and SLAVE units may exchange roles. If a unit goes out of service, e.g. due to an inverter fault, it will automatically be excluded. The load at this point is shared between the units that are still active. If the total load power exceeds the capacity of the remaining UPS's, the system logic switches all the units, including the UPS that was excluded, onto the bypass line.

All the information contained in the section on "operating modes" (page 35) in relation to the UPS remains valid with the addition of the information set out below.

ON LINE OPERATION

The message: "NORMAL OPERATION" is shown on the display panel of each UPS and the letter "P" appears in the bottom left-hand corner near the indication of the model. This letter is in upper case if the equipment in question is the MASTER, while a lower case character is displayed if the UPS is a SLAVE.

STAND-BY ON OPERATION

Sharing the load between the UPS's is linked to the length of the cables, and the rules on the length of the connections indicated in the section "connections" must be observed. In the event of a mains power failure, the load is supported by all of the parallel-connected UPS's.

STAND-BY OFF OPERATION

In this mode, if there is a mains power outage, the UPS's share the load equally; the load is not powered with the mains present.

STABILIZER WITHOUT BATTERY OPERATION

In this mode, the units share the load equally. Without a battery each unit is only a power conditioner, not a UPS.

BATTERY OPERATION

One battery for each UPS

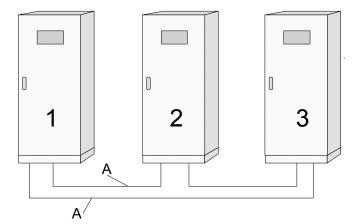
Each unit draws the energy from its own battery. At the end of its backup time each UPS excludes itself. The load remains unpowered if the duration of the mains outage is greater than the backup time of the whole system. When the mains power is restored the system will restart automatically. Each UPS recharges its own battery.

One battery for all the UPS's.

Each unit draws the energy from the common battery. At the end of the backup time, the whole system excludes itself. The load remains unpowered if the duration of the mains outage is greater than the backup time of the whole system. When the mains power is restored the system will restart automatically. Each UPS recharges the common battery.

OVERLOAD

Also in this mode the devices share the overload equally.

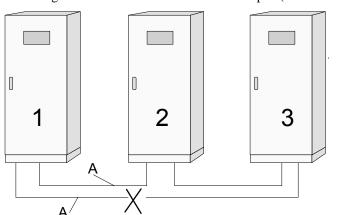

If the load applied to the system is not reduced, the whole system will transfer the load to the bypass line. When the overload is removed, all the units will automatically return to normal operation. If the overload persists, however, it triggers the external protection devices located at the UPS input on the bypass line. In this case the load would remain unpowered.

Pag. 50 a 83 OMLMHTK65RUENUB

Example of parallel operation

For the sake of simplicity, the instructions shown below refer to a system with three UPS's, but are equally valid for more complex systems.

Let us assume that the signal cable is not damaged and that the UPS's are in the following state:

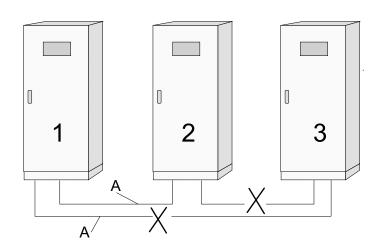


UPS STATUS

- 1) Normal operation, Master unit
- 2) Normal operation, Slave unit
- 3) Normal operation, Slave unit

A - UPS PARALLEL CABLE type RJ45 1, 2, 3 - Parallel-connected UPS's

If the signal cable between UPS's 1 and 3 is open (UPS PARALLEL CABLE type RJ45).



UPS STATUS

- 1) Normal operation, Master unit with message "Parallel signal cable fault" appears on the panel
- 2) Normal operation, Slave units with message
- "Parallel signal cable fault" on the panel
- 3) Normal operation, Slave units with message "Parallel signal cable fault" on the panel

Note: In this situation, the load is powered correctly. All the UPS's supply power to the load.

Let us assume that the signal cables between UPS's 1,3 and 2,3 are opened.

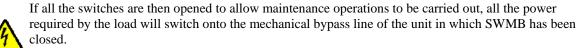
UPS STATUS

- 1) Normal operation, Master unit with message "Parallel signal cable fault" on the panel
- 2) Normal operation, Slave units with message "Parallel signal cable fault" on the panel
- 3) Disconnected (TLI open, SCRs off), Slave units with message "INTERNAL FAULT 10" on the panel

NOTE: In this situation the load is only powered correctly by UPS's 1 and 2.

To restore the broken signal cable, first the UPS with the message "INTERNAL FAULT 10" on the panel has to be shut down.

Pag. 51 a 83 0MLMHTK65RUENUB


follows these precautions when operating SWMB

SWMB must not be closed on a UPS that is off and that is connected in parallel with other units operating normally. This operation may cause a fault on the UPS's which may create a dangerous voltage at the output. SWMB may be closed with the UPS operating by following the procedure described in the section "Operating modes".

operation not to be executed

If SWMB is closed on any unit, the whole system switches to bypass.

WARNING: both the automatic and the mechanical bypass line of each UPS is sized for the rated power of the single unit.

NOTE To mechanically bypass the entire UPS system the switches SWMB of all the units must be closed.

Mechanical bypass on a single unit

This is the procedure to perform a mechanical bypass operation on a single unit (e.g. UPS1):

Open switches SWBY, SWOUT, SWIN and the battery cabinet circuit breaker/disconnect on unit 1 only. If the active UPS's can power the load, the system remains in normal operation and maintenance can be carried out on UPS1.

Mechanical bypass on the whole system

The sequences of operations to be carried out to place the system in mechanical bypass are described below. The procedures vary depending on the initial state:

- All the UPS are in NORMAL OPERATION

procedure a) the power supplied to the load is not interrupted in any way;

- whole system with output not synchronized with the bypass line

<u>procedure b)</u> the power supplied to the load is interrupted (therefore, this operation should be used only if absolutely necessary).

Procedure a)

The bypass line is present and its frequency and voltage are within the acceptable range. *the UPS display panel indicates* NORMAL OPERATION.

- 1. Close all the switches SWMB (the control logic automatically disables the inverter)
- 2. Open all the switches on the UPS (SWIN, SWOUT, SWBY and the battery cabinet circuit breaker/disconnect) and keep only SWMB (mechanical bypass switch) closed. The control panel remains off.

After carrying out the above operations, personnel must wait at least ten minutes for the capacitors to discharge before working on the inside of the UPS.

In this situation, any disturbance (such as a blackout) on the mains supply line will have an effect on the load (since the batteries are deactivated in this state).

Pag. 52 a 83 0MLMHTK65RUENUB

Procedure b)

The bypass line is out of the acceptable range; the following message is showed on the display panel:

BAD BYPASS VOLTAGE or SWBY OFF and the green LED 1 will flash

- Open all the switches on the UPS (SWIN, SWOUT, SWBY and the battery cabinet circuit breaker/disconnect). The control panel will remain off.
- Before closing switches SWMB and connecting the loads, ensure that both the frequency and voltage of the mains supply are sufficient to power the connected loads.

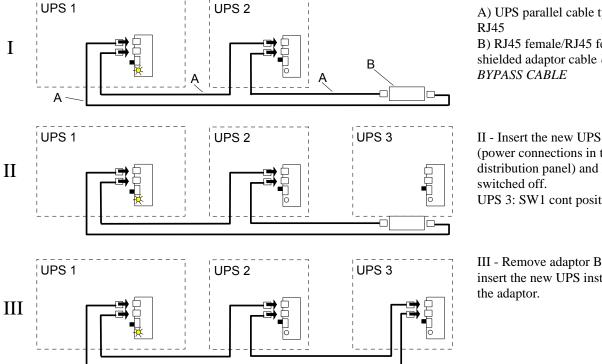
After carrying out the above operations, personnel must wait at least ten minutes for the capacitors to discharge before working on the inside of the UPS.

At the end of the maintenance operations, restart the UPS by following the instructions in the section on START-UP PROCEDURE (see page 49) and then open SWMB (if closed).

The UPS will return to NORMAL OPERATION.

Insertion and removal with UPS's operating (hot swap)

The hot insertion and removal of the UPS can only take place if the system is configured with the RJ45 female/RJ45 female shielded adaptor cable (as shown in the figures below).


The hot insertion and removal of the UPS makes technical support easier and improves the reliability of the system. With this procedure it is not necessary to shut down all the UPS's in order to add or remove a unit.

Hot insertion and removal can only be done on systems comprising UPS's with the following characteristics:

The UPS system must be prearranged with a distribution panel (for power connections)

The UPS system must be prearranged with a RJ45 female/RJ45 female shielded adaptor cable (not provided with the UPS). All the UPS's in the system must have the same firmware version.

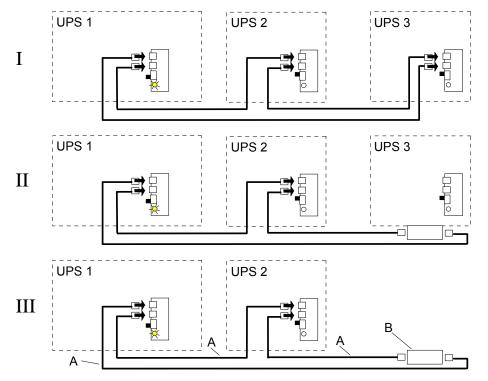
Example of hot insertion

Now switch on UPS 3 (the added UPS).

A) UPS parallel cable type

B) RJ45 female/RJ45 female shielded adaptor cable UPS BYPASS CABLE

(power connections in the distribution panel) and keep it switched off.


UPS 3: SW1 cont position.

III - Remove adaptor B and insert the new UPS instead of

Pag. 53 a 83 0MLMHTK65RUENUB With the lever of SW1 in the start position in one UPS only and the lever in the cont position on all the others, check that all the UPS's are operating normally and that the system is sharing the output power.

Example of hot removal

With hot removal, it is not necessary to shut down all the UPSs of the system in order to remove one.

- A) UPS parallel cable type RJ45
- B) RJ45 female/RJ45 female shielded adaptor cable *UPS BYPASS CABLE*

NOTE: if the UPS to be removed has SW1 in the start position, one of the other UPS's (UPS 1 or UPS2) must be in the start position.

One UPS in the system must have SW1 in the start position and LED ON.

- I Shut down the UPS (3) that is to be removed. Remove the signal cables of the UPS to be removed.
- II, III Connect the RJ45 female/RJ45 female shielded adaptor cable (not provided) between cables A.

Check that all the UPS are operating normally and that the system is sharing the output power.

Pag. 54 a 83 0MLMHTK65RUENUB

Frequency Converter Setup

RPS MASTER HP-UL series products are designed to operate from 480 volt, 60Hz input and can be set through front panel settings to provide 400 volt, 50Hz output. The power rating is reduced 20% in frequency converter mode.

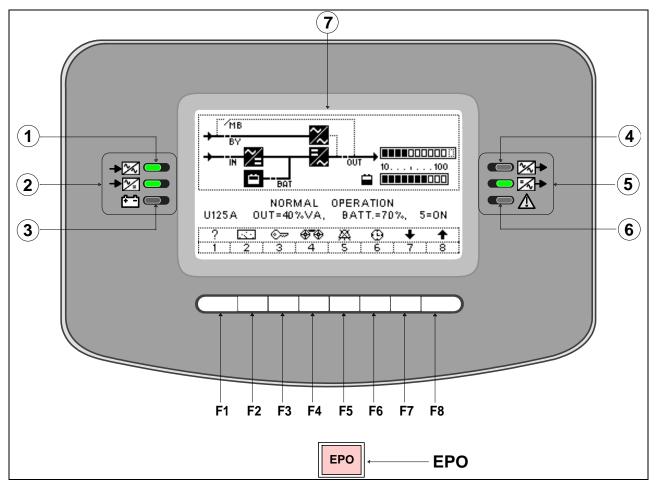
The following procedure is to be used for adjusting the output voltage and frequency.

For parallel systems the following settings must be made with the parallel card disconnected.

- 1) With the unit operating in normal mode **OPEN** the **SWOUT** switch and the **SWBY** switch, both located on the panel behind the front door.
- 2) The following sequence of numbers must be entered into the display to access settings. Press the front panel display buttons 3, 5, 151515, 7
- 3) Press 3, 5, 723641, 7 to access the frequency converter settings
- 4) Press 8 to Enable frequency converter mode

CAUTION: when adjusting the output frequency from 60Hz to 50Hz always adjust the voltage before setting the frequency to 50HZ and follows this sequence.

- 5) Press 2 to enter the Voltage adjust menu. Press keys 5, 6, 7, or 8 as necessary to adjust the output voltage to 400/230. Keys 5 and 6 are coarse adjustments while 7 and 8 are fine adjustments. Press 1 to exit from the voltage adjust menu.
- 6) Press 3 to enter the Frequency adjust menu. Press keys 5, 6, 7, or 8 as necessary to adjust the output frequency to 50Hz. Keys 5 and 6 are coarse adjustments while 7 and 8 are fine adjustments. Press 1 to exit from the voltage adjust menu.
- 7) Press 1 to exit from the frequency converter menu
- 8) The display should now show VF after the unit rating. UxxxA VF
- 9) Close the **SWOUT** switch. The unit is now configured as a frequency converter.


CAUTION: During operation in this mode static bypass will not be available and the maintenance bypass switch **SWMB** should **NOT** be closed.

10) The unit can be turned back to 480 volt, 60Hz output by simply turning off frequency converter mode. Follow steps 1, 2 and 3 above. Press key 7 to disable frequency converter mode.

Pag. 55 a 83 0MLMHTK65RUENUB

Signal panel functions

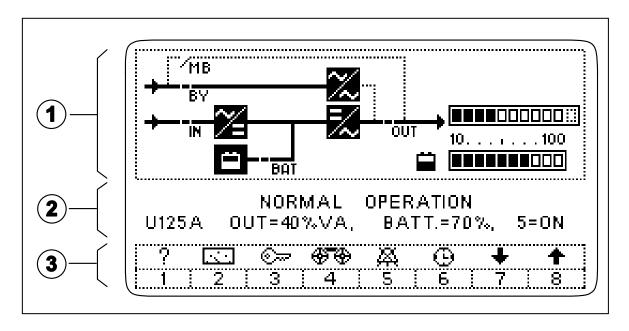
Control Panel View

- 1 LED Bypass line indicator
- 2 LED Mains line indicator
- 3 LED Battery powering the load
- 4 LED Load on bypass
- **(5)** LED Normal output
- **6** LED Alarm for internal fault
- **7** Graphic display

F1, **F2**, **F3**, **F4**, **F5**, **F6**, **F7**, **F8** = FUNCTION KEYS. The function of each key is shown at the bottom of the display and it varies according to the menu.

EPO = Emergency Power Off button.

Pag. 56 a 83 0MLMHTK65RUENUB


	Led status indicators					
Indicator	Symbol	Color	Function	State	Meaning	
			Bypass	On	Input Bypass line is present and correct	
1	→ 🏏	Green	line	Flashing	Input Bypass line is present but not correct	
			indicator	Off	Input Bypass line is not present	
			Mains	On	Mains is present and correct	
2	→ 1/2	Green	line indicator	Flashing	Mains is present but not correct	
			mulcator	Off	Mains is not present	
			Battery	On	When the battery is supplying the load	
3	<u> </u>	Yellow	powering the load	Flashing	The "LOW VOLTAGE ON BATTERY PRE-ALARM" is active, or the BATTERY DISCHARGE OR SWB OPEN alarm is active	
				Off	When the battery is not supplying the load	
		¥ Yellow		On	The system output is switched onto the automatic bypass line	
(4)	%\ 		w Load on	Flashing	The system output is switched onto the automatic bypass line with the output power greater than 100%VA, or the manual bypass switch SWMB is closed	
				bypass	Off	When the system output is switched onto inverter or the output is switched onto the bypass line and both switches SWOUT and SWMB are open, or when the TOTAL BLOCK command is active
					On	The system output is feed from inverter on normal or stand-by operation, the output power is correct since it is less than 100%VA and the output switch SWOUT is closed
(5)	⋈ →	Green	Green Normal output	Flashing	The system output is switched onto inverter, the output power is greater than 100%VA, or switch SWMB is closed	
				Off	The system output is switched onto automatic bypass, or switch SWOUT is open.	
		\ Red	Alarm for d internal fault	On	An internal fault is present	
6	\triangle			Flashing	F	
				Off	There are no internal faults.	

Pag. 57 a 83 0MLMHTK65RUENUB

GRAPHIC DISPLAY

A wide graphic display is present on the UPS door, which allows the user to have a close-up, detailed overview in real time of the status of the UPS. The user can switch the UPS on and off, check electrical mains, output, battery measurements etc. (1) and perform the main unit settings.

Picture of a display on the UPS operating on "Normal Operation" with 40% output load and battery 70% charged.

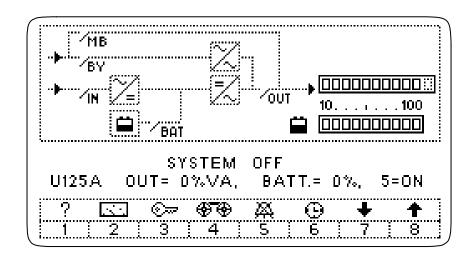
The display is divided into four main areas, each one with its own specific role.

1 Operation Diagram

Area of the display where the UPS status of operation is shown by means of shapes with filled lines when they are active and with dotted lines when they are inactive.

2 UPS MESSAGES AND MAIN OPERATING VALUES.

Area where the UPS operating status is displayed by means of two text lines. The first line displays messages that are explained in the "alarm message" paragraph". The second line displays the main operating values about system, output load, battery, buzzer and alarm message number.


(3) KEY FUNCTION

Area that shows the key function by means of numbers and icons. The key function is also indicated in the sub menus, on the two text lines with the related number. When a key is pressed the related box change to filled line

Pag. 58 a 83 0MLMHTK65RUENUB

¹⁾ The precision of the measurements is: 1% for voltage measurements, 3% for current measurements, 0.1% for frequency measurements. The indication of residual autonomy time is only an ESTIMATE; it must not, therefore, be considered a precise measuring instrument.

Picture of the UPS display having all items OFF,

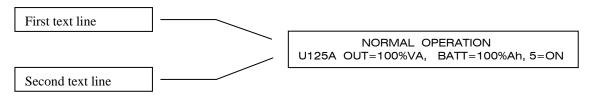

Table of diagram items Shapes				
Active	Inactive	Meaning		
<u>~</u>	Z	Input converter		
₹⁄~		Output inverter		
%	Z	Bypass line switch		
		Battery		
МВ	∕мв	Manual bypass line switch		
BY	/BY	Bypass line input switch		
BAT	"/BAT	Battery switch		
BAT	OUT	Output switch		
<u>IH</u>	\IN	Main line input switch		
OUT 10100	001 10100	Output load (40%VA or 0%VA)		
10100	10100 10100	Battery(70% Ah or 0% Ah)		

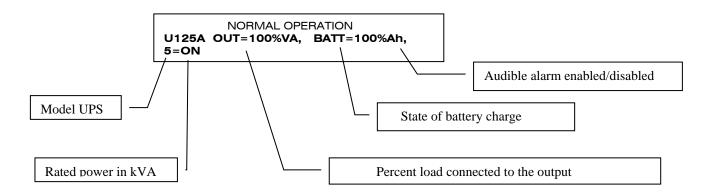
Table with	Table with keys numbers and Icons				
Key Off/C	N	Icon	Meaning		
	1	?	Information or n. 1		
[_2_]	2	<u> </u>	Measures or n. 2		
(3)	3	ᢒᢍ	Commands or n. 3		
(4)	4	⊕ ••	History or n. 4		
(5)	5	Ø	Buzzer OFF/ON or n. 5		
(6)	6	\odot	Display date/hours or. n. 6		
(7)	7	+	Decrease value or sub menu or n. 7		
[8]	8	+	Increase value or previous menu or n. 8		

Pag. 59 a 83 0MLMHTK65RUENUB

Basic menu (text lines area)

If no commands have been inserted, the first text line shows messages to inform about status of operation.

In each operating condition, the display returns to the "basic menu" after two minutes from the last command inserted with the keys. The basic menu shows the signal messages relating to the current operating state.


The first line of the basic menu shows:

When there are no alarms present the first text line of the main menu shows a fixed message, "NORMAL OPERATION"

When some alarms are present, the first text line of the main menu shows each active ALARM message, "ALARM MESSAGES", one at a time for a few seconds:

The second line of the basic menu shows:

The second line displays the main operating values about system, output load, battery, buzzer and alarm message number

The message U125A indicates an UPS model with 125kVA rated power, operating with 60Hz output frequency. When the unit is set for the parallel operation the letter "P" is added (U125AP). The letter "P" became lower case "p" when the unit operate as slave.

Pag. 60 a 83 0MLMHTK65RUENUB

The message OUT changes to BY when the load is not powered from the inverter (normal operation) but from the mains through the bypass line.

The message OUT=100% VA changes to OUT= SWMB when the load is powered through the mechanical bypass switch, and the output current cannot be provided.

The value 100% VA provided in the example is obtained from the measurement of the output current.

The number indicates the output current with the value relating to the absolute rated value and the value indicated is the greater of the effective current and the peak current.

- BATT= 100% Ah: example of the current state of the percentage of battery recharge.

The value 100% Ah is obtained from the measurement of the charge current and the time taken to recharge.

The number indicates the recharge value as a percentage according to the capacity of the battery connected and to the quantity of charge used during battery operation.

The system automatically remains in rapid charging for all the time needed to supply the battery with the quantity of charge lost during the discharge.

The indication "% Ah" changes to "min." (minutes) during operation in the event of a mains failure or when the battery is discharging. In this case the numeric value refers to the remaining minutes of operation, calculated according to the current supplied by the battery and to the state of charge of the battery.

NOTE:

The backup time shown is calculated according to the measurement of the discharge current present at that time, the stored value relating to the capacity of the battery connected and the stored value relating to the percentage of recharge prior to discharge. The backup time shown should nevertheless be considered as indicative due to the many different factors affecting it. If considerable differences are noted between the expected value and the actual time of a discharge with constant load, the stored data relating to the battery must be checked, as must the state of the battery.

- **5=ON**: example of the message showing whether or not the audible alarm is enabled; if disabled, the message changes to 5=OFF.

1.1.29 Language setting menu (keys 1, 1)

From the keys menu, press 1 twice to access the languages menu.

The following languages are available:

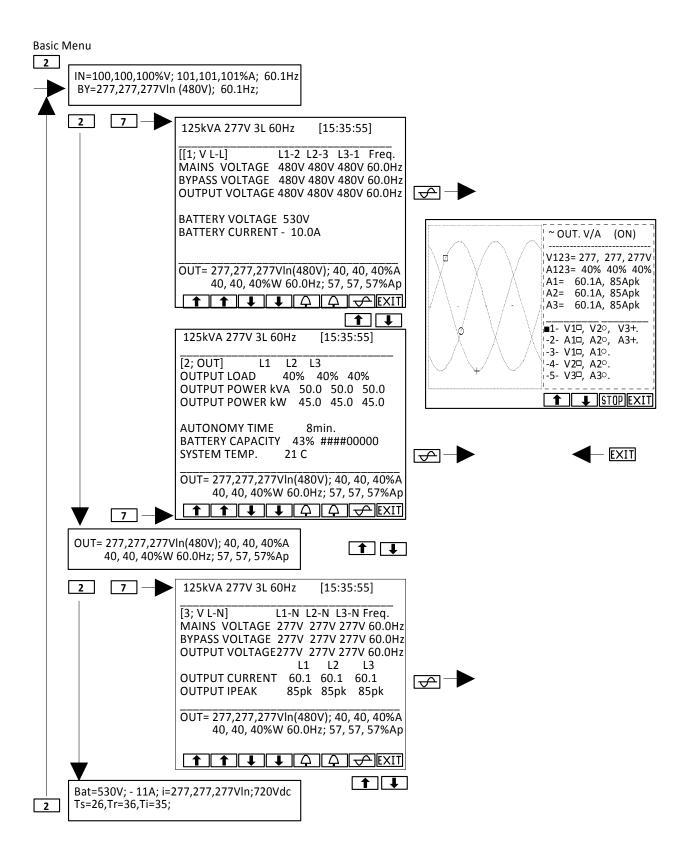
Italian, English, French, German, Spanish, Dutch, Swedish, Polish, Hungarian, Turkish, Czech, Russian, Romanian and Portuguese.

The system will show all subsequent messages in the language selected . The selected language remains stored even after the shutdown and restart of the system. The current language can only be changed by accessing the LANGUAGES menu.

Use keys 1 and 8 to return to the basic menu.

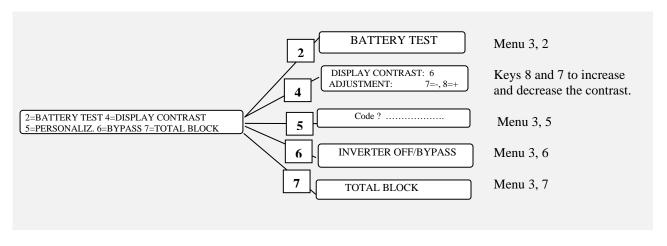
Pag. 61 a 83 0MLMHTK65RUENUB

1.1.30 Measurements menus (key 2)

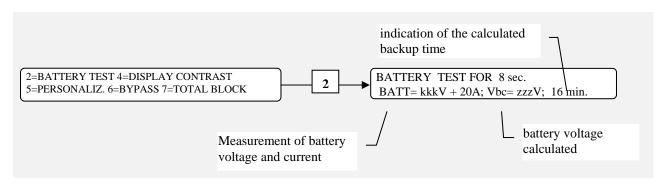

The measurements with two line displayed, are selected from the basic menu by pressing key 2

IN=100,100,100%V, 60.2Hz OUT=277,277,277Vln Measurement of the three voltages, neutral phase and input Measurement of the three output phase voltages of frequency. The voltage is indicated as a percentage of the rated the UPS, with the concatenated value in brackets. voltage; for example 100% is equivalent to 277V. 100,100,100%A Measurement of the three output currents. The 101.101.101%A Measurement of the three input currents. The input currents are output currents are expressed as a percentage expressed as a percentage of the rated value. of the rated value. BY=277,277,277Vln(480V) 100,100,100%W Measurement of the active output power. The power Measurement of the three input phase voltages of the bypass line, is expressed as a percentage of the rated power. with the concatenated voltage (the average of the three values) in Output frequency. brackets. 60.1Hz 60.1Hz Frequency of the bypass line. 147,147,147%Ap Measurement of the three peak currents as a percentage relating to the three output phases during operation from inverter. During operation from bypass, the message OUT changes to BY. Basic menu IN=100,100,100% V; 101,101,101% A; 60.1Hz BY=277,277,277Vln (480V);60.1Hz; 2 2 OUT= 277,277,277Vln(480V);100,100,100%A 6 100,100,100%W 60.1Hz;147,147,147%Ap 2 OUT= 10000h; BY= 10000h; BATT= 10000sec BAT=xxxV; +0.0A; i=277,277,277Vln;yyyVdc 6 nBATT= 1000; n0% Ah= 100; 2007-01-01 Ts=28,Tr=50,Ti=49,Tb=25; BATT=xxxV battery voltage value; battery current, positive with +0.0ABattery discharging, negative with battery OUT=10000h hours of normal operation charging; BY=10000h hours of operation from bypass i=277,277,277Vln inverter output voltage; **BATT=10000sec** time spent in operation from battery input inverter DC voltage yyyVdc nBATT = 1000number of times the battery has discharged number of times the battery has discharged n0%Ah = 100Ts=28, Tr=50, Ti=49, Tb=25; fully Temperature of the system, and of the rectifier data stored on first start-up of the UPS. 2007-01-01 and inverter modules, Tb is present only if the These are HISTORY data, and remain stored even when the device external temperature the sensor is installed; is switched off and may not be reset.

Pag. 62 a 83 0MLMHTK65RUENUB


1.1.32 Full page Measurements and output waveforms (key 2, 7)

The full page measurements and output voltage and current waveform are selected by pressing key 7 from the two line measurement menu.



Pag. 63 a 83 0MLMHTK65RUENUB

1.1.33 Controls Menu (key 3),

1.1.33.1 Keys menu 3, 2: battery test

This activates the cycle to check the state of efficiency of the battery, which lasts 8 seconds. Press key 8 to interrupt the test and return to the basic menu before this time has elapsed.

The battery test cycle lowers the rectifier output voltage so that the battery can be evaluated with the real supply on the load even when the power supply voltage is present.

The rectifier output voltage is only lowered if the bypass line voltage is present, in order to avoid any loss of output load without the support of the bypass.

The battery test cycle is activated:

- manually;
- automatically every 60 sec. after each failed test (for three times), or each time the system is restarted;
- automatically every 24 hours from system start-up;
- automatically in non visible mode during operation without mains power supply.

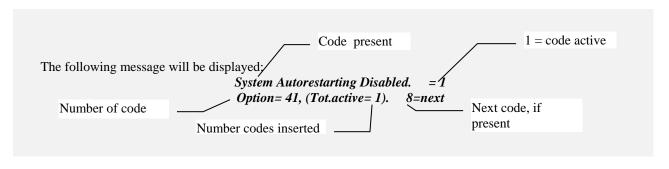
At the end of each test, the alarm is activated if the voltage measured is lower than the calculated voltage; the charge value stored and the backup time indicated are subsequently halved. A new test is performed 60 sec. after activation of the alarm and if the result is negative the alarm is activated once again for another 60 sec.

The alarms continue to halve the charge value stored until the calculated battery voltage is less than the voltage actually measured. In practice, this battery control system produces an alarm each time the battery is seen to have less than half of the expected charge. If this alarm is on PERMANENT, it indicates that the battery is inefficient, the battery circuit is interrupted, the battery disconnector has remained open or one of the protection device fuses has been triggered. If this alarm is on TEMPORARY, it indicates a reduction in the efficiency of the battery; the more frequent the alarm, the more serious the problem.

Disabling the BATTERY TEST: press keys 3, 5: "CUSTOMIZING", insert code 323232, with battery test disabled the code o=02 will be shown in the basic menu of the display. To reactivate the test, insert code 323232 again.

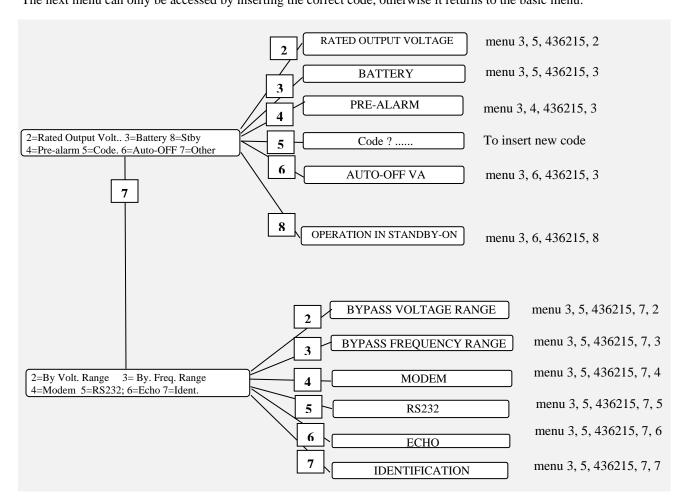
Pag. 64 a 83 0MLMHTK65RUENUB

1.1.33.2 CUSTOMIZING


The "CUSTOMIZING" menu is accessed by means of key 5 from the COMMANDS menu; an intermediate menu will then be displayed in which a CODE has to be entered.

Access by CODE ensures that unauthorized persons cannot modify the operating parameters of the equipment.

The use of the codes to modify the operation of the equipment (such as the frequency converter, stabilizer, rectifier start-up delay, etc.) are the prerogative of the service personnel.


The activated codes may be displayed (if present) with the following sequence of keys from the basic menu: 7 + 4 then by scrolling through the alarms with keys 7 and 8.

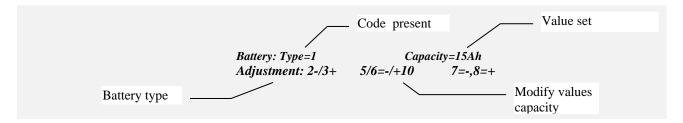
1.1.33.3 Keys menu 3, 5: CODE 436215

The code is no longer required for 2 minutes after it has previously been inserted.

The next menu can only be accessed by inserting the correct code, otherwise it returns to the basic menu.

Pag. 65 a 83 0MLMHTK65RUENUB

1.1.33.4 RATED OUTPUT VOLTAGE.


Press the following sequence of keys to access the menu: 3, 5, 436215, 2

Keys 7 and 8 can be used to decrease or increase the rated output voltage.

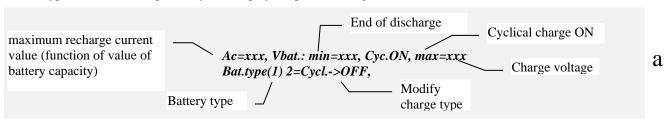
The value displayed is the voltage between phase and neutral "Vln". The value set modifies the operation of the inverter, during normal operation. The new output value voltage also changes the reference value for the acceptable range of the voltage at the bypass line input.

1.1.33.5 BATTERY

Press the following sequence of keys to access the menu: 3, 5, 436215, 3

On initial installation the rated capacity value of the connected battery must be inserted; this value is usually printed on the battery container.

battery capacity


It is important to insert the correct battery capacity value, since this value is used by the system logic to calculate the backup time.

If not set otherwise, this value is assumed to be equal to the UPS power. e.g. at 100kVA the value set by default is 100Ah.

Battery type = for high intensity discharge batteries change from value 1 (normally pre-set for normal batteries) to value 2; value 3 is to be used for vented batteries.

Cyclical battery recharging (factory-set:

Select type 1 or 2 and then press key 4 to display the pre-set voltage values:

Select type 0 and then press key 4 to modify the voltage values reset by keys 3,4 and 7,8.

Ac=xxx, Vbat.: min=xxx, Cyc.ON, max=xxx
Bat.type(0) 2=Cy., 3-/4+, 7-/8+

Pag. 66 a 83 0MLMHTK65RUENUB

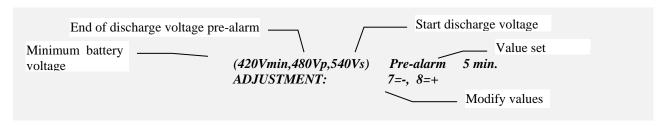
Recharging at two voltage levels (configurable):

This type of recharging is effected with two current levels (EN 50272-2); the first step comprises rapid charging (U1) with limited current, while in the second step charging is with float voltage (U2).

NOTE: this type of recharging may be configured on site and is mainly used for special type batteries such as vented and NiCd.

For batteries of type 1, 2 or 3, press key 2 from menu **a** to change from cyclical charge to charging at two levels

```
Ac= xxx, Vbat.: min=xxx, ch xxx, max=xxx
Bat.type(1) 2=Cycl.->ON,
```


For batteries of type 0, press key 2 from menu b to change from cyclical charge to charging at two levels

Ac=xxx, Vbat.: min=xxx, ch xxx, max=xxxBat.type(0) 2=Cy., 3-/4+, 5-/6+, 7-/8+

Use keys 3,4; 5,6 and 7,8 to set the values

1.1.33.6 PRE-ALARM

Press the following sequence of keys to access the menu: 3, 5, 436215, 4

Press key 1 to exit the menu. The menu above will appear with batteries of type 1, 2 or 3.

Voltage values Vmin, Vp and Vs are not fixed values but are a function of the battery discharge current, [Vp=Vmin+5V+10*(battery current [A]/battery capacity [Ah]).

Keys 7 and 8 can be used to decrease or increase the time to activate the pre-alarm before the system blocks due to end of battery discharge. Variations in the field of 1 minute are possible from 2 to 254 minutes.

The pre-alarm signal is activated when the remaining calculated time is lower than the pre-alarm value set or when the battery voltage is lower than the pre-alarm voltage value Vp.

Pre-alarm

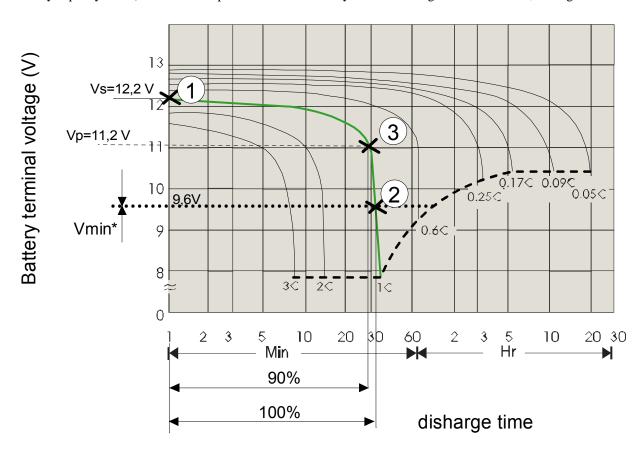
A wide safety margin must be provided for the use of the pre-alarm function, since the expected backup time may not provide for increases in the output load power, and may not make allowance for sudden, unexpected battery defects.

Pag. 67 a 83 OMLMHTK65RUENUB

Type "0" Battery

With the battery set to type 0, the following menu is displayed:

When key 4 is pressed, the program proposes the setting of the three voltage values.


Vbat.test: Vmin., Vp, Vs: 420, 480, 540V Adjustment: 3-4+, 5-6+, 7-8+

Preset value

With the three factory preset voltage values, the display panel may indicate an incorrect backup time during discharge.

Battery type "0" setting

The three values to be set are linked to the *battery discharge regime* (relationship between discharge current / battery capacity in Ah). Example: for a 100Ah battery with a discharge current of 100A, the regime is 1.

The three values, Vs, Vmin and Vp, are obtained from the discharge characteristic curve, supplied from manufacturer, relating to the *battery discharge regime* 1C has been determined:

Vs start of discharge voltage (1), intersection with the x-axis (battery terminal axis), [the value must be multiply for 40, number of batteries]

Vmin minimum voltage value (end discharge battery), point of intersection with the dashed curve (if this value is lower than Vmin* set up Vmin=Vmin* (2).

Pag. 68 a 83 0MLMHTK65RUENUB

[the value must be multiply for 40, number of batteries]

Vp battery voltage with discharge at 90% of the total time (3).

1.1.33.7 AUTO-OFF "VA"

Press the following sequence of keys to access the menu: 3, 5, 436215, 6:

Automatic Switch-OFF when Output < 0%VA Adjustment: (5=Toff,Ton) 7=-,8=+

Press key 1 to exit the menu.

Keys 7 and 8 can be used to decrease or increase the percentage threshold of the output load for the AUTO-OFF function and switching the system to the bypass line; variations of 1% are possible in the field from 0 to 99% of the rated output load.

For shutdown with mains present, when the output power reaches < of the value set, the battery charge value must be > 60%.

Once this value is reached the system is deactivated.

For shutdown with power output < value set, it must be verified that the battery capacity value is > 60%.

Shutdown is not immediate, but is delayed by the time set as the end of battery discharge pre-alarm (standard value 5 minutes); in this phase the "end of discharge pre-alarm" contact of the remote alarms card is switched, after this time the output is switched to the bypass line if this voltage is present and the voltage also remains present at the output.

The load remains switched to the bypass line while the output power remains lower than the "AUTO-OFF" value, then the system waits for an increase in the load before effecting the automatic return to normal operation; The "AUTO-OFF" function may be used to shut down the system during operation from battery, simply by shutting down the output load. In normal operation, the "AUTO-OFF" function may be used to reset consumption since the power circuits are deactivated, the battery remains isolated and only the control circuits, with consumption equivalent to a light bulb, remain active.

1.1.33.8 AUTO-OFF Timer.

Press the following sequence of keys to access the menu: 3, 5, 436215, 6, 5:

AUTO-OFF Timer: Toff >0: 0', Ton= 0: 0' ADJUSTMENT: (5=Toff, 6=Ton) 7=-, 8=+

Press key 1 to exit the menu.

The keys have the following functions:

- 6 to modify the value Ton
- 5 to modify the value Toff.

Toff and Ton are time values used by the system to affect an automatic daily shutdown and restart cycle.

The timer cycle is inhibited when Toff = Ton.

When the internal clock reaches the time Toff, if the mains voltage is present and the percentage of recharge is less than 60%, only the following is displayed:

AUTO-OFF Timer: Toff= 20:00', Ton= 7:00' H100, OUT100% BATT= 50%Ah 5=ON

The system waits until the battery recharge exceeds the value of 60% before deactivating.

When the internal clock reaches the time Toff (20:00'), if the mains voltage is present and the percentage of recharge is greater than 60%, or the mains voltage is not present and operation is from battery, the following is displayed:

AUTO-OFF Timer: Toff= 20:00', Ton= 7:00' H100, OUT100% OFF:4 min 5=ON

Pag. 69 a 83 OMLMHTK65RUENUB

The "end of discharge pre-alarm" contact for remote alarms is also switched.

In this case the system remains active for the next 4 minutes, after which the system switches onto the bypass line and then deactivates.

There is no output voltage after deactivation.

The interval between the start of the alarm and deactivation is equal to the interval selected as PRE-ALARM. When the internal clock reaches the time Ton (7:00'), if the mains voltage is present, the system automatically reactivates and returns to normal operation.

1.1.33.9 BYPASS VOLTAGE RANGE ADJUSTMENT

Press the following sequence of keys to access the menu: 3,5,436215, 7, 2:

Press key 1 to exit the menu. Keys 7 and 8 can be used to decrease or increase the value, as a percentage, of the acceptable range for the voltage at the bypass line input, with respect to the rated output value. With the UPS in standby-ON mode, the menu is as follows:

(StbyON=15%) BY. VOLTAGE RANGE = +/- 15% ADJUSTMENT: (5-, 6+) 7=-, 8=+

Keys 5 and 6 can be used to reduce or increase the percentage of the acceptable range of the bypass voltage in STBY ON mode.

1.1.33.10 BYPASS FREQUENCY RANGE ADJUSTMENT

Press the following sequence of keys to access the menu: 3,5,436215,7, 3:

Press any key other than 7 or 8 to exit the menu. Keys 7 and 8 can be used to decrease or increase the value, as a percentage, of the acceptable range for the frequency at the bypass line input. The choice is between the values \pm 1%, and \pm 5% relative to the rated system value of 60 Hz.

1.1.33.11 MODEM

Press the following sequence of keys to access the menu: 3, 5, 436215,7, 4:

MODEM enable = 0, ADJUSTMENT: (5=dial, 6=send) 7=-, 8=+

Press key 1 to exit the menu.

Keys 7 and 8 can be used to decrease or increase the control value for management of the modem. The choice is between the values of 0 to 5. The initial value is 0.

0 = the modem connected to the RS232 port is deactivated. Terminal 20 of the RS232 connector assumes a low level (-12V) (DTR signal deactivated).

NOTE the configuration MODEM=0 is essential when the modem is not used and the RS232 connector is used for connection to the remote panel.

1= signal DTR is activated (terminal 20 at +12V), the modem is enabled to reply (it should be remembered that a remote panel connected to the RS232 connector in place of the modem remains off).

2= signal DTR is activated, the modem is ready to reply and for automatic calls.

After an "internal fault" alarm has been on for 30 seconds, the system automatically dials the stored "DIAL" number. When it receives the modem's receiving reply it sends a message made up of the UPS acronym, the stored "SEND" number, a copy of the text shown on the display, the alarm code and the date and time of transmission.

Pag. 70 a 83 0MLMHTK65RUENUB

NOTE: for correct operation, use a modem that has already been configured to recognize "HAYES" type commands and that is able to dial the telephone number using pulses or tones as required by the telephone line that is to be used.

Example of messages sent to the modem in the event of an "INTERNAL FAULT 5" alarm.

Assuming that the settings are as follows: Modem =2, Dial=23456, Send=123456.

30 seconds after the start of the persistent alarm, the system sends the modem the command: ATD 23456

On receiving the message "CONNECT" from the modem, the system sends: *UPS 123456 INTERNAL FAULT: 5*

100, OUT=100%VA, BATT= 78%Ah, 5=ON a=00200300 1999-12-21, 13:12:28

The system then sends the sequence to close the communication:

+++ ATH

Lastly, signal DTR is also lowered for 0.5 sec.

If the telephone line is engaged or the remote modem does not reply, the system tries to call again every 5 minutes until it manages to connect, provided that the alarm condition is still present.

3= like 2 with automatic call when any alarm is verified.

4= like 2 with automatic call only for alarm 10, and with sending of message only after the reply from the remote modem has been acknowledged by the reception of the character "}".

This mode ensures that the receiving computer does not lose any messages.

5= like 4 with automatic call when any alarm is verified.

1.1.33.12 "DIAL /SEND" MODEM

Press the following sequence of keys to access the menu: 3, 5, 436215,7, 4, 5 (6):

MODEM dial n.=6543210/////// <=2..3=> ADJUSTMENT: (5=dial, 6=send) 7=-, 8=+

Press key 1 to exit the menu.

Keys 7 and 8 can be used to decrease or increase the figure on which the cursor is positioned.

The cursor is moved by means of keys 2 and 3, and is indicated initially by the character '_'.

Each number may assume values from 0 to 9, the symbol / indicates that the corresponding figure is disabled.

A correct "dial" number must start with a figure from 0 to 9, the setting /6543210 is ignored.

Select menu 35746 or press key 6 when menu 35745 is active to set the "send" number.

1.1.33.13 RS232

Press the following sequence of keys to access the menu: 3, 5, 436215, 7, 5:

Press key 1 to exit the menu. Keys 7 and 8 for RS232-1 (3 and 4 for RS232-2) can be used to decrease or increase the baud value for the transmission speed. The choice is between the values 1200, 2400, 4800, 9600.

1.1.33.14 ECHO.

Press the following sequence of keys to access the menu: 3, 5, 436215, 7, 6:

Press key 1 to exit the menu. Keys 7 and 8 can be used to decrease or increase the number used to enable the "ECHO" function. The number may vary from 0 to 1 to disable or enable the function. When the function is enabled the system automatically sends a copy message of the display with the addition of the code "a=......" and the current date and time to the RS232 output.

The message is sent for each variation in the state of the alarms (that is, any change in code a=......).

Pag. 71 a 83 0MLMHTK65RUENUB

1.1.33.15 IDENTIFICATION.

Press the following sequence of keys to access the menu: 3, 5, 436215, 7, 7:

Press key 1 to exit the menu. Keys 7 and 8 can be used to decrease or increase the number used for the identification of a single unit in systems with several UPS connected to a single RS232 serial line. The basic number is 0 and may be changed between values from 0 to 7.

1.1.33.16 STANDBY-ON OPERATION

Press the following sequence of keys to access the menu: 3,5,436215,8:

Stby= 2sec. Stby_ON= 0 Adjustment: 4=Sma.ON, 5-,6+ 7=-,8=+

Press key 1 to exit the menu. Press key 8 Stby=1 to change the UPS from ON-LINE mode to STANDBY-ON mode. Press key7 to change the UPS from STANDBY-ON mode to ON-LINE mode. The switch onto the bypass line may be immediate when "Stby = 0 min." or delayed by means of keys 5 and 6. The backup line must be available for the time set within the acceptance field before the switchover can take place (see "PERSONALIZ. BYPASS VOLTAGE FIELD" menu). The setting remains stored even during a shutdown due to a power failure. For a description of the operation see the section "SETTING MODES".

1.1.33.17 SMART ACTIVE OPERATION

Press the following sequence of keys to access the menu: 3,5,436215,8,4:

SMART ACTIVE S. Stby = 5 min. Stby_ON = 1Adjustment: 4=Sma.OFF, 5-,6+ 7=-,8=+

Press key 1 to exit the menu. When the Smart Active function is activated via key 4, Stby_ON goes to 1. The setting remains stored even during a shutdown due to a power failure. There is a delay of 5 minutes before transfer to SMART ACTIVE mode. For a description of the operation see the section "SETTING MODES". When the code is inserted the basic menu becomes:

NORMAL OPERATION SMART A.
P200, M OUT= 99%VA, BATT= 100%Ah, 5=ON

1.1.33.18 INVERTER-OFF/BYPASS

Press the following sequence of keys to access the menu: 3, 6:

Exit the menu by pressing key 8 or any other key with a sequence other than the one described here. Pressing keys 4, 7, 2, 6, 3 in succession as shown on the display activates the command for bypass with shutdown of the inverter. The command is executed after a few seconds' delay to allow for cancellation. When this command is active, the following alarm is shown on the display:

"BYPASS COMMAND ACTIVE; 8=DEACTIV.".

To return to normal operation, including after system shutdown, the command has to be cancelled by pressing key 8, or by sending the key code through the RS232.

NOTE To mask the command code 47263, insert code 436213 on the panel from the PERSONALIZATIONS menu (keys 3, 5). Repeat the operation to display the code again.

Pag. 72 a 83 OMLMHTK65RUENUB

1.1.33.19 TOTAL BLOCK

Press the following sequence of keys to access the menu: 3, 7:

Total System Shut-OFF Command = 47263 WARNING, the Output Voltage will be OFF

Exit the menu by pressing key 8 or any other key with a sequence other than the one described here. Pressing keys 4, 7, 2, 6, 3 in succession as shown on the display activates the command for TOTAL BLOCK of the system. When this command is active, the display shows the alarm

BLOCK COMMAND ACTIVE; 8=DEACTIV.

The command is executed after a few seconds' delay to allow for cancellation. This command is useful to achieve full deactivation in an emergency, operating remotely via the RS232 line. To reactivate the UPS, close switch SWBY or, if applicable, press button 8.

NOTE: To mask the command code 47263, insert code 436213 on the panel from the PERSONALIZATIONS menu (keys 3,5). Repeat the operation to display the code.

1.1.34 "RECORDER": RECORDED EVENTS (key 4)

Press the following sequence of keys to access the menu: 4

message alarm stored a=FFFF-FFFF; 2005,12,31/14:45:50 n=100

Return to the basic menu by means of key 1. Key 2 activates the submenu "RECORDED VOLTAGES MEASUREMENTS". Keys 3, 4 and 5 keep their normal functions.

Key 6 activates submenu 4, 6 " RECORDED CODES" and allows the exchange of stored alarm message with the display of the corresponding status codes at the time of the stored event, and vice versa. The status codes allow a more in-depth analysis by the trained personnel.

1.1.34.1 RECORDED VOLTAGES MEASUREMENTS

Press the following sequence of keys to access the menu: 4, 2, 2, 2

IN=100,100,100%V,50.0Hz; BATT=430V,+100A BY=400V,50.0Hz; <u>n 35</u> OUT=400,50.0Hz,100%

The "RECORDED VOLTAGES MEASUREMENTS" menu is accessed via key 2 (press 2 again to access the other measurement menus from menu 4 "RECORDED EVENTS" or menu 4, 6 "RECORDED CODES" only. Press key 1 to return to the basic menu immediately.

In the example, \underline{n} 35 (flashing) indicates that the measurements shown refer to the state relating to recorded event number 35. The meaning of the measurements is the same as those in menu 2.

1.1.34.2 RECORDED CODES

Press the following sequence of keys to access the menu: 4, 6

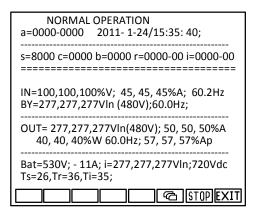
s=FFFF c=FFFF b=FFFF r=FFFF-FF the=FFFF-FF a=FFFF-FFF; n=100, 1992,12,31/14:45:50

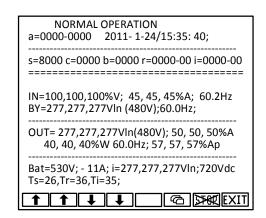
Pag. 73 a 83 OMLMHTK65RUENUB

The "RECORDED CODES" menu is accessed with key 6 from menu 4 "RECORDED EVENTS" and menus 4, 2; 4, 2, 2; 4,2,2,2 that is, the recorded measurement menus. Return to the basic menu by means of key 1.

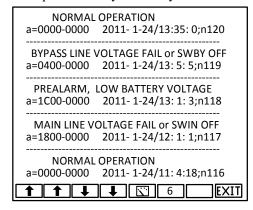
Apart from key 6, the other keys have the same functions as those described for menu 4, and the messages on the lower line also remain the same.

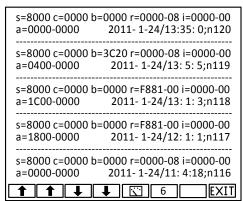
The upper line: s=FFFF c=FFFF b=FFFF r=FFFF-FF i=FFFF-FF, shows the internal codes recorded at the time of the event.


Use key 6 to return to menu 4 while keeping the current event; you can then switch several times from the description of the event with the "stored alarm message" to the one with the internal codes.


1.1.34.3 RECORDED value on full page

The "RECORDED value on full page" menu is accessed with key 4 from menu 4.


On this page, when the "stop" key is not cross marked, are shown all present measurements and internal codes, and the past measurements when the "stop" key is marked.


When the "STOP" key is cross marked it is possible to look to the other past value recorded by arrow keys.

This key switch to the page showing the message and codes of 4 past events and it is possible to look to the other past events by arrow keys.

This key switch to page with all codes and measurements displayed of 1 event. The key "6" switch from code with message line to full lines code.

Pag. 74 a 83 OMLMHTK65RUENUB

1.1.35 DISABLING THE AUDIBLE ALARM (key 5)

Press the following sequence of keys to access the menu: 5

During operation from the basic menu, the operator can permanently disable or re-enable the audible alarm (buzzer) by pressing key 5. "5=ON" is shown in the basic menu when the audible alarm is enabled and "5=OFF" when the audible alarm is disabled. Key 5 in other menus may only be used to disable the sound, when no other functions are envisaged for this key. The command is stored even during a shutdown due to a power failure.

1.1.36 "CLOCK": DATE/TIME (key 6)

Press the following sequence of keys to access the menu: 6

The "DATE/TIME" menu is accessed via key 6 from the basic menu.

The display shows the current contents of the internal calendar and clock with the following format:

DATE/TIME = ymd/h = years, months, days / hours, minutes, seconds.

The contents can be modified via the menu by inserting the personalization code 436215. This code remains active for 2 minutes after it has been inserted.

The next menu can only be accessed by inserting the correct code, otherwise the system returns to the basic menu. Press keys 2, 3, 4, 5 or 6 to select which value to change.

DATE/TIME = Xmg/h = 2003 12 31/24:60'60 ADJUSTMENT: 7=-, 8=+

In this case the year's value is to be changed; the flashing symbol X superimposed over the letter shows which field has been selected. Press keys 7 or 8 to decrease or increase the selected value by one unit; press any one of the other keys to exit the menu.

1.1.37 "ARROW DOWN": Internal Codes, firmware ver.(key 7)

Press the following sequence of keys to access the menu: 7

s=FFFF c=FFFF b=FFFF r=FFFF-FF i=FFFF-FF a=FFFF-FFF; INTERNAL CODES; ver.10.....

The "INTERNAL CODES" menu is accessed from the basic menu via key 7. The codes represented provide information on the operating status of the UPS and about system firmware version. This information is used by the service personnel.

Pushing more key 7 it is shown the page with information about other firmware version, serial number and service telephone number.

125kVA 277V 3L 60Hz [15:35:55]

System: Ver.= 28, rev= 1, ck=A404
Panel: Ver.= 01, rev= 1, ck=B235
DSP: Ver.=3333, rev= 0, ck=1ABC
Serial N.= ML36AP183410001
Dial Tel.= 0201010101010

NORMAL OPERATION
U125AA OUT= 40%VA, Batt= 35% 5=0N
EXIT

Pag. 75 a 83 0MLMHTK65RUENUB

Maintenance

The Uninterruptible Power System is designed and produced to last a long time, even in the most severe service conditions. It should be remembered however that this is electronic power equipment, which requires periodic maintenance. Moreover, some components have a limited lifespan and as such must be periodically checked and replaced: in particular the batteries, the fans and in some cases the electrolytic capacitors. It is therefore recommended to implement a planned maintenance program which should be entrusted to specialized personnel authorized by the manufacturer.

Our Technical Support Team is ready to help you for any question and for planned maintenance.

Periodic maintenance (to be carried out by trained personnel and with doors closed)

The following operations (which must be done with the doors closed) should be carried out periodically (e.g. once a month, or more frequently in particularly severe environmental conditions):

- Ensure that the air intake slots (located on the front door and at the back of the cabinet) and the output grilles located on the top of the cabinet are clean;
- Ensure that the UPS is working properly (the message "NORMAL OPERATION" will appear on the display panel). If an alarm message is displayed, check the meaning in the manual before contacting the technical support service;
- Perform a battery test via the display panel.

Maintenance inside the UPS (trained personnel only)

Maintenance inside the UPS may only be carried out by trained personnel. The UPS is designed to power the load when it is disconnected from the mains power supply.

High voltage is present inside the UPS even when the mains power supply and the battery have been disconnected

After disconnecting the mains power supply and the battery cabinet, trained service personnel must wait at least ten minutes for the capacitors to discharge before working on the inside of the equipment.

Planned maintenance for batteries (trained personnel only)

The system automatically controls the efficiency of the batteries every 24 hours, and sounds an alarm when the efficiency is lower than that calculated, according to the stored capacity value (See page 64).

The lifespan of the batteries rely on the operating temperature and to the number of charge and discharge cycles the battery has experienced.

The capacity is not constant, but increases after some charge and discharge cycles then remains constant for several hundreds of cycles before decreasing permanently.

Planned maintenance of the battery concerns the following aspects:

- keeping the operating temperature in the range of 20°C 25°C;
- performing two or three discharge and charge cycles during the first month of use;
- carrying out this operation every six months after the first month of use.

Since the batteries are a source of energy, opening the battery circuit breaker/disconnect does not eliminate the voltage inside the battery cabinet.

If the batteries are supposed to be faulty in any way, please contact RPS technical support.

Do not try to access the inside of the battery cabinet. There are always present high voltages near and around the batteries.

If the batteries need to be replaced, this must be done by a *specialized technician*. The replaced parts must be sent to a specialized company for recycling according to the national and local laws. Batteries are classified by law as "hazardous waste", it is prohibited to dispose the batteries in other ways except recycling.

General characteristics

UPS models	65 kVA 80 kVA 100 kVA 125			
MECHANICAL DATA				
Width (inches [mm])	31.50 [800]			
Depth / height (inches [mm])	33.46 [850] / 74.80 [1900]			
Ventilation	Forced			
Max current dispersion	300mA max			
Noise at 1m from front (0÷100% load) (dBA)	65	65	65	68
Applicable Standards	NE	UL Standard 177 National Electrical (Code (NFPA-70) PE-1, A C22.2, -39.1-1984, part J Class A, ANSI C 62.41-198	0,

UPS models	65 kVA	80 kVA	100 kVA	125 kVA
INPUT RECTIFIER				
Rated voltage		480Vac 3	-phase	
Rated voltage tolerance without contrib. of battery @100% load		-10%, +	15%	
Voltage tolerance in battery mode or load depending		-40%, +	15%	
Input frequency tolerance		from 45 to	o 65Hz	
Rated current (480 V) (A)	76	94	118	147
Rated power (480 V)-(kVA)	63	78	98	122
Maximum current at full load and with battery recharging (A)	89	109	136	160
Maximum power absorbed at full load and with battery recharging (kVA)	73	90	113	140
Power factor at nominal voltage (400 V) and battery charge from 25% to 100% of the load		>0.9	9	
Current Harmonic Distortion (THDi) (with mains distortion <1%) % load rated load at 100% 75% 25÷50%	≤ 3 ≤ 5			
soft start of rectifier (Power Walk-in)	from 0 to 30 seconds (configurable)			
Delay of Rectifier soft start (Power Walk-in delay timer))		from 0 to 120 secon	ds (configurable)	

UPS models	65 kVA	80 kVA	100 kVA	125 kVA
INTERMEDIATE D.C. CIRCUIT				
Batteries /Cells	40 / 240			
Ripple voltage with recharged battery (%)	Approx. 0			
Max recharge current (A)				
Full load	16	20	24	30
Load 90%	27	33	42	50
Load 80%	38	47	51	70
Load ≤ 70%	49	60	76	95

Pag. 77 a 83 0MLMHTK65RUENUB

UPS models	65 kVA	80 kVA	100 kVA	125 kVA	
INVERTER					
Rated power Pf 0.9 (kVA) inductive	65	80	100	125	
Active power Pf 1 (kW)	58.5	72	90	112.5	
Power derating (kVA/kW) for Pf =0.8/0.9 capacitive		0.85/0).89		
Rated voltage		480Vac 3-p	hase + N		
Rated frequency		60H	lz		
Voltage range adjustment		+5% -	10%		
Voltage variation [Static]		± 19	%		
Voltage variation [Dynamic]		± 59	%		
Recovery time within ± 1%	C	20m onforms to standard		1	
Crest Factor (Ipeak/Irms)		3:1			
Voltage distortion [THD] with linear load		1% (typical),	2% (max)		
Voltage distortion [THD] with non linear load		< 39	%		
frequency synchronization with the bypass mains (from inverter)	\pm 2% (adjustable from \pm 1% to \pm 6% from control panel)				
frequency synchronization without the bypass mains (free-running variation)		± 0.09	5%		
Slew - rate variation		1Hz/s	sec		
Voltage unbalance ratio with balanced and unbalanced load		≤ 19	%		
Phase angle deviation with balanced and unbalanced load		120 ±	1 °el		
Overload with reference to the rated power: Three phase	110% for 60min, 125% for 10min, 150% for 1min				
Single phase	200% for 7 second				
Short circuit current Phase / Phase	180% for 1 second with current limiting				
Phase / Neutral	al 300% for 1 second with current limiting				
Inverter efficiency (%)	95%				
Normal mode AC/AC efficiency	93%				
Normal mode heat rejection (BTU/Hr)	15,033	18,500	23,120	28,900	

UPS models	65 kVA	80 kVA	100 kVA	125 kVA
BYPASS				
Rated voltage	480Vac 3-phase + N			
Rated voltage range	± 15% (adj	ustable from ± 10%	to ± 25% from cont	rol panel)
Rated frequency		60H	l z	
Frequency range	± 2%	(adjustable up to ±	6% from control pa	nel)
Switching onto bypass with synchronized Inverter (UPS in "Normal Mode")		~ 0r	ms	
Switching onto bypass with Inverter out of sync (UPS in "Normal Mode")	20ms			
Switching from bypass to Inverter (UPS in "Stand-by On mode")	from 2 to 5ms			
Delay in transfer onto Inverter after switching onto bypass	4 sec			
Power overload capacity of the bypass line (kVA)	110 % for 60 minutes, 125 % for 10 minutes, 150 % for 1 minute			or 1 minute
Short circuit capacity of the bypass line (x rated current)				
1 second	20	15	12	10
500 ms	23	18	15	12
200 ms	26	21	17	14
100 ms 10 ms	30 40	22 30	18 25	15 20

Pag. 78 a 83 0MLMHTK65RUENUB

Appendix A Alarm messages

Below is a list of the alarm messages that are shown on the first line of the display panel, the "A=" column shows the number that is also displayed on the right in the lower row .

		ALARMS
A=	EVENT MESSAGE	DESCRIPTION
0	NORMAL OPERATION	No Alarms are present
1	DISTURBANCES ON BYPASS LINE	Alarm present when there is interference on the bypass line, such as voltage peaks or harmonic distortion, while the voltage and frequency are correct. WARNING: in this case the inverter is not synchronized with the bypass line; if the bypass is forced with SWMB, with the remote commands or from the panel, the load may undergo a sudden variation in voltage.
2	MANUAL BYPASS, SWMB ON	The mechanical bypass switch SWMB is closed, thus preventing the UPS from returning to normal operation. The load is powered directly from the input and will remain unpowered if there is a mains failure.
3	BYPASS LINE VOLT. FAIL or SWBY,FSCR OFF	The UPS does not recognize the bypass line because it is outside the acceptable range or because SWBY is open,
4	MAIN LINE VOLTAGE FAIL or SWIN OFF	The power supply voltage is not correct, the load is powered with the energy stored by the battery. This alarm is present if one of the following conditions occurs: - the supply voltage or frequency of the rectifier power supply line is not within an acceptable range (see characteristics) - SWIN is open, - rectifier fault
5	PREALARM, LOW BATTERY VOLTAGE	Alarm present if the residual backup time is lower than the time set for the pre- alarm (the factory-set value is 5 minutes).
6	LOW BATTERY CHARGE or CLOSE SWB	A BATTERY TEST performed by the UPS logic with the mains power supply present detected a battery voltage lower than the value calculated (see BATTERY TEST menu page 64).
7	LOW INPUT VOLTAGE or OUTPUT OVERLOAD [W]	Alarm present if one of the following conditions occurs: - the power supply voltage in input is insufficient to power the load (see general characteristics); - the active power [W] of the output load is greater than the rated value.
8	OUTPUT OVERLOAD	This indicates that the required load power, which is supplied by the inverter, is greater than the allowed rated power, thus the value indicated, expressed as a percentage %VA, exceeds the value of 100%. The same alarm is also activated when the peak load current exceeds the maximum value allowed. When this alarm is present the load must be reduced, otherwise the system will automatically transfer to the bypass line within a time that is inversely proportional to the value of the overload.
9	BYPASS FOR OUTPUT VA < AUTO-OFF VALUE	This message is present when the load power in %VA is lower than the "AUTO-OFF" value set (see page 69). The %VA value for AUTO-OFF is factory-set at zero (thus the alarm condition cannot be checked).
10	INTERNAL FAULT	Alarm codes used by customer service.
11	TEMPORARY BYPASS, WAIT	This indicates that the load is powered from the bypass line and the system is in the condition prior to the automatic return to normal operation with power supplied from the inverter. This temporary operation may take place, as an example, during the start-up phase or while waiting for the return to inverter after a bypass due to overload.
12	BYPASS FOR OUTPUT OVERLOAD	This indicates that the load is powered from the bypass line and is greater than the rated value; the value indicated on the panel, expressed as a percentage %VA, exceeds the value of 100%. The load must be reduced to prevent damage to the UPS. The load must be reduced in order to return to NORMAL OPERATION. Wait a few minutes to allow cooling (e.g. the time for the return to NORMAL OPERATION is 60s if the load goes down to 50%, and 8 minutes if it goes down to 75%).

Pag. 79 a 83 0MLMHTK65RUENUB

13	BYPASS COMMAND ACTIVE; 8=COMMAND OFF	Alarm present when the system has been deactivated and switched onto the bypass, by means of a specific command inserted via the keyboard. The command remains stored also during shutdown due to a mains power supply failure. The system does not return to normal operation when the mains power supply is restored if the block has been set intentionally and not deactivated.
14	REMOTE BYPASS COMMAND: ACTIVE	Alarm present when the system has been deactivated and switched onto the bypass, by the command applied with the "signals and remote commands" connector. The command is not stored, and the system returns to normal operation when the command is cancelled, provided there is a power supply voltage.
15	OVERTEMPERATURE or FAN FAILURE	Alarm when one of the internal temperatures on the system card, the inverter power modules, the rectifier power modules or the transformers has exceeded the maximum value allowed. This may be caused by: - operation in an environment where the temperature is too high; - a fault in the fans.
16	INSULATION LOSS	Indicates that a signal of "insulation loss" has been received from an external device
17	INPUT VOLTAGE SEQUENCE NOT OK	Indicates that the sequence of the phases at the bypass line input is not correct. It is normally sufficient to switch any two phases over in order to obtain normal operation.
18	OUTPUT OFF, CLOSE SWOUT OR SWMB	Alarm when there is no output voltage because SWOUT and SWMB are both open at the same time.
19	SYSTEM OFF COMMAND ACTIVE; 8=COMMAND OFF	Alarm present when the command for total shutdown from the panel or through the RS232 connection, COMMAND STORED, has been initiated. The system executes the shutdown command with a few seconds' delay to allow for cancellation. The command remains stored even during shutdown due to a power outage. When the power supply is restored, the system does not return to normal operation if the block that has been intentionally set is not deactivated; to deactivate it close SWBY or, if required, press 8.
20	REMOTE SYSTEM OFF COMMAND: ACTIVE	Same as the previous alarm, with command present from the "REMOTE" connector.
21	MEMORY CHANGED: CODE=	Code 1 the memory has been changed and the operating parameters have returned to standard values. If non-standard values were previously set, these must be personalized again. Switch the display off and then on again in order to remove the alarm. NOTE: codes other than 1 may be displayed temporarily during variations due to personalization, but this does not affect normal operation.
22	TIMER OFF ACTIVE	Alarm when the daily timer set for the control of the automatic shutdown and restart cycles starts operating (page 69). The values of Toff and Ton are factory-set to zero (thus the timer condition is disabled).
23	SYSTEM OFF	The system is OFF therefore the output load is not feed
24	BATTERY TEST ACTIVE	The battery test is operating
25	Parallel Cable FAULT	There is a fault in the parallel signals cable.
26	Fuse FAULT	Some optional fuses are blown
27	Battery discharge Fail	The optional battery discharging test failed.
28	NOT USED	Alarm number not used.
29	High battery temperature	The battery temperature is over the limit.
30	Slave UPS off by rectifier or SWIN OFF	In a system with common battery the inverter was switched off because the input stage failed or switched off.
31	Fan FAULT	Failure in some fans (available only when installed the fan alarm option)
32	Parallel Redund. lost: High unit power	In a parallel system, the redundancy is has been lost because the output load power is high.
33	Parallel Redund. lost: Redund. unit OFF	In a parallel system, the redundancy is has been lost because the operating units are less than the set number of units.
34	Brake circuit fail	The optional brake circuit has a failure

Pag. 80 a 83 0MLMHTK65RUENUB

35	Brake circuit Overload	The optional brake circuit has an overload
36	Rectifier switched OFF by Remote command	The input converter stage is switched off by a remote command.
37	WAIT starting: NOT connect the BATTERY	The input converter is starting, it needs to wait before connecting the battery
38	UPS SERVICE	The unit operation time exceeded the set time to require service.
39	BATTERY SERVICE	The battery operation time exceeded the set time to require service.
40	Battery charge < set level [Ah%]	The system is waiting to start in normal operation, after a complete battery discharging, because the battery is not charged above the requirement.
41	Input switch OFF	The external optional input switch is OFF.
41 42	Input switch OFF INSULATION LOSS A.C.	The external optional input switch is OFF. The external optional ac imput insulation checking device, detected the ac. insulation lossing.
	INSULATION LOSS	The external optional ac imput insulation checking device, detected the ac. insulation
42	INSULATION LOSS A.C. INSULATION LOSS	The external optional ac imput insulation checking device, detected the ac. insulation lossing. The external optional dc output insulation checking device, detected the ac. insulation
42	INSULATION LOSS A.C. INSULATION LOSS D.C. Motor Generator parallel mode	The external optional ac imput insulation checking device, detected the ac. insulation lossing. The external optional dc output insulation checking device, detected the ac. insulation lossing.

Pag. 81 a 83 0MLMHTK65RUENUB

Appendix B - Optional remote commands

 $Technical \ support \ personnel \ may \ modify \ the \ COMMAND \ that \ can \ executed \ from \ the \ standard \ ``INV.OFF'' \ remote input or \ from \ the \ optional \ remote \ input/output \ card.$

COMMAND			
Name	Description	Typical application	
Battery charge inhibition	Disables the recharging of the battery, keeping the recharge current to a minimum, independently of the load. This is done with the contact kept closed; if reopened, the command is cancelled.	When there is a generator, this allows its output power to be used only to supply the load and not also to recharge the battery.	
Inhibition of synchronization with backup mains	Disables the use of the bypass line and the synchronization of the inverter. In the event of an overload or fault, the UPS blocks and the load remains unpowered. This is done with the contact kept closed; if re-opened, the command is cancelled.	To be used when the frequency of the generator or of the backup mains is highly unstable and it is thus preferred to inhibit the synchronization of the inverter.	
Battery disconnector contact	Activates the battery discharging or disconnected alarm. To be used to indicate the opening of a battery switch located external to the UPS.A closed contact must be provided when the external switch is opened.	Displays the status of the battery disconnector.	
Standby ON	Forces the selection of the UPS Standby-ON operation. This is done with the contact kept closed; if reopened, the command is cancelled.	To be used when the load may support mains interference or frequency variations and it is thus preferred to improve system efficiency. The load is powered if there is a mains power failure.	
Battery test	Starts the automatic battery test when the UPS is in normal operation. Any automatic battery test underway is terminated immediately. This is achieved by switching the contact from open to closed.	Checks state of the battery.	
Battery test (with rectifier on)	Starts the manual battery test that continues until a block command is received or until the full discharge of the battery. Terminates any manual battery test underway. This is achieved by switching the contact from open to closed.	Checks state of the battery. NOTE: During this test the rectifier remains on with output voltage low in order to allow the supply of current by the battery and to prevent inverter shutdown after battery discharge.	
Manual battery charging	Starts the "single first time recharge". Terminates the first time charging underway. <i>This is achieved by switching the contact from open to closed.</i>	Activates manual remote battery charging	
Activation of block on Bypass	Bypass command by means of blocking the inverter as a result of switching onto the bypass line. NOTE: The command is only executed if the bypass line is present with correct values. <i>This is achieved by switching the contact from open to closed.</i>	Load unpowered in the event of a mains outage. To be used for non-critical loads, the battery does not discharge during a mains power failure	
Inhibition of block on bypass	Resets the bypass command. This is achieved by switching the contact from open to closed.	Cancels the previous action and disables the inverter block.	
Inverter ON/OFF	UNCONDITIONAL inverter block command (the command is executed even if there is no bypass line). The UPS only switches onto bypass if the bypass line is present (otherwise the load remains unpowered). This is done with the contact kept closed; if reopened, the command is cancelled.	Load unpowered in the event of a mains outage. To be used for non-critical loads, the battery does not discharge during a mains power failure.	
Rectifier OFF	UNCONDITIONAL rectifier blocks command. This is done with the contact kept closed; if reopened, the command is cancelled.	Shuts down the rectifier and discharges the battery.	

Pag. 82 a 83 0MLMHTK65RUENUB

UPS conform to:

This device has been designed and manufactured in accordance with the standards for the product.

- General and safety requirements: EN 62040-1

- Electromagnetic compatibility (EMC) requirements: EN 62040-2 (category C3)

- Methods of specifying the performance and test requirements: EN 62040-3

The conformity to these Standards allows to bear the ${\bf C}$ ${\bf E}$ mark.

Warning

This is a product for commercial and industrial application in the second environment – installation restrictions or additional measures may be needed to prevent disturbances (EN 62040-2 C3).

Pag. 83 a 83 0MLMHTK65RUENUB